

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 272-276 (2004) 1796-1797

www.elsevier.com/locate/jmmm

Thermal conductivity and magnetism in $(Ca_{1-X}Sr_X)MnO_3$

Hiroyuki Fujishiro*, Yosuke Fujine, Yasuhisa Mita, Manabu Ikebe

Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan

Abstract

The thermal conductivity $\kappa(T)$ and the magnetization M(T) have been measured for the $(Ca_{1-X}Sr_X)MnO_3$ system $(0 \le X \le 0.30)$. The dominant phonon scattering by magnons has been found to be essential to explain the characteristic $\kappa(T)$ enhancement below the weak-ferromagnetic (WF) transition temperature T_N . The WF behavior of M(T) is weakened with increasing X and the Dzyaloshinski–Moriya interaction is indicated to be the origin of WF. (C = 2003 Elsevier B.V. All rights reserved.)

PACS: 65.40.-b; 75.30.Kz; 75.25.+z

Keywords: Thermal conductivity; $(Ca_{1-X}Sr_X)MnO_3$; Magnetization; Phonon scattering

1. Introduction

The physical properties of perovskite-type manganites $RE_{1-X}AE_XMnO_3$ (RE = trivalent rare-earth ion, AE = divalent alkaline-earth ion) have been widely investigated for the basic and applicational interests. In the electron-doped region $(X \sim 1.0)$, however, the detailed reports are rather scarce. Several Ca-based $RE_{1-x}Ca_{x}MnO_{3}$ compounds have been investigated for $X \sim 1.0$, because a canted spin structure associated with pretty large negative magnetoresistance (MR) has been observed for $X \sim 0.9$ [1–3]. We have already investigated the thermal conductivity $\kappa(T)$, thermal contraction $\Delta L(T)/L$ (300 K) and magnetization M(T) for the lightly electron-doped La_{1-X}Ca_XMnO₃ (0.98 $\leq X \leq 1.0$) system [4]. $\kappa(T)$ of CaMnO₃ showed a peculiar enhancement below the weak-ferromagnetic transition temperature $T_{\rm N}$ (= 130 K). The $\kappa(T)$ enhancement was rapidly suppressed by introduction of Mn³⁺ spins due to the La³⁺ doping and/or the introduction of oxygen deficiency. The reduction of the $\kappa(T)$ enhancement could not be explained by the difference in the lattice states as monitored by $\Delta L(T)/L$ and we examined the possibility of the magnon heat conduction below $T_{\rm N}$. In order to

perform detailed analyses of the origin of the $\kappa(T)$ enhancement, we must collect more detailed information about the related compounds. In this paper, we investigate $\kappa(T)$ and the magnetization M(T) for the $(\text{Ca}_{1-X}\text{Sr}_X)$ MnO_3 system $(0.0 \leq X \leq 0.30)$. The substitution of the Ca^{2+} -site by the larger Sr^{2+} ions is expected not to change the spin state of Mn^{4+} ions but to reduce the overall structure deviation from cubic and introduce lattice randomness.

2. Results and discussion

 $(Ca_{1-X}Sr_X)MnO_3$ samples were prepared from stoichiometric mixtures of CaCO₃, SrCO₃, La₂O₃ and Mn₃O₄ raw powders. The mixtures were calcined twice at 1000°C for 24 h in air, pressed into pellets and then sintered at 1450°C for 8 h in air. The samples were heattreated at 1100°C for 24 h in flowing oxygen to improve the oxygen stoichiometry. All the samples were confirmed to be in a single orthorhombic phase at room temperature by means of X-ray diffraction. The density of each sample was about 85% of the ideal one. The thermal conductivity $\kappa(T)$ was automatically measured in a Gifford–McMahon cycle helium refrigerator as described elsewhere [5]. The magnetization M(T) was measured by a SQUID magnetometer under a magnetic field of 0.5 T after zero field cooling (ZFC).

^{*}Corresponding author. Tel.: +81-19-621-6363; fax: +81-19-621-6373.

E-mail address: fujishiro@iwate-u.ac.jp (H. Fujishiro).

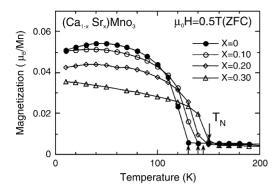


Fig. 1. Temperature dependence of the magnetization M(T) for the $(Ca_{1-X}Sr_X)MnO_3$ system.

Fig. 1 shows the magnetization M(T) for the samples. The M(T) curve of the X = 0.0 sample shows a sharp increase at $T_N = 130$ K, which suggests the onset of the weak ferromagnetism (WF) [6]. The magnitude of the WF moment is about 1/80 of the Mn⁴⁺ moment (~3 μ_B). T_N gradually increases with increasing X; e.g., $T_N = 140$ K for X = 0.10 and $T_N = 150$ K for X = 0.30, respectively. In contrast, the WF moment decreases with increasing X.

 $(Ca_{1-X}Sr_X)MnO_3$ with orthorhombic structure has no inversion symmetry at the midpoint of the nearest Mn^{4+} spins. In this lattice, Dzyaloshinski–Moriya (DM) antisymmetric exchange interaction is possible, which results in WF with a canted spin configuration in an antiferromagnet [7]. The substitution of Ca^{2+} sites by the larger Sr^{2+} ions should bring about the decrease of tilting of the MnO₆ octahedra and the local symmetry between nearest Mn^{4+} spins approaches cubic. This effect weakens DM interaction and may enhance the antiferromagnetic superexchange interaction, which results in the decrease of the WF saturation value of M(T) and increase of T_N .

Fig. 2 shows $\kappa(T)$ vs. *T*. With decreasing temperature, $\kappa(T)$ of all the samples remains almost constant down to $T_{\rm N}$, where $\kappa(T)$ abruptly begins to increase. The $\kappa(T)$ enhancement below $T_{\rm N}$ is far drastic for the X = 0.0 and is weakened with increasing *X*. With further decrease of *T*, $\kappa(T)$ takes a sharp maximum at $T_{\rm max}$ (~40 K for X = 0.0). $T_{\rm max}$ slightly decreases with increasing *X*, i.e., with decreasing $\kappa(T)$ of each specimen.

Now let us briefly discuss the origin of the $\kappa(T)$ enhancement. Since the semiconductive electrical resistivity $\rho(T)$ of the present sample is very large ($\rho > 1 \ \Omega \ cm$), the electron component κ_e can be entirely neglected. As inferred from M(T) in Fig. 1, 10% Ca²⁺site substitution by Sr²⁺ hardly affects the magnetic order below T_N , while $\kappa(T)$ enhancement is drastically depressed in the X = 0.10 sample. This result suggests that the enhancement is unlikely to be related with the

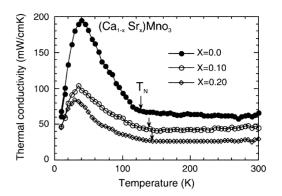


Fig. 2. Temperature dependence of the thermal conductivity $\kappa(T)$ for the $(Ca_{1-X}Sr_X)MnO_3$ system.

magnon heat transfer. Then the phonon component $\kappa_{\rm ph}$ should be dominant over the entire temperature range.

In insulators, the phonon–phonon scattering is wellknown to result in the $\kappa_{\rm ph}$ peak at a low temperature and $\kappa_{\rm ph} \propto 1/T$ dependence at higher temperatures [8]. The 1/T dependence, however, does not explain our observation, because $d\kappa(T)/dT$ discontinuously changes around $T_{\rm N}$. The temperature dependence of $\kappa(T)$ of $({\rm Ca}_{1-X}{\rm Sr}_X){\rm MnO}_3$ is consistent with the $\kappa_{\rm ph}$ model with dominant phonon scattering by magnons below $T_{\rm N}$. The overall reduction of $\kappa(T)$ and the slight decrease of $T_{\rm max}$ with increasing X can be understood as to come from enhanced phonon scattering of point defect-type caused by the Ca²⁺-site substitution [9], while the strength of the magnon scattering preserving nearly constant (detailed numerical analyses are to be presented elsewhere).

In summary, we have analyzed the effect of Ca^{2+} -site substitution by Sr^{2+} on the behavior of M(T) and $\kappa_{ph}(T)$ in $(Ca_{1-X}Sr_X)MnO_3$. The weak ferromagnetism was weakened with increasing X as a result of the reduction in the orthorhombic lattice distortion from cubic. The origin of the apparent $\kappa(T)$ enhancement below T_N can be attributed to the phonon scattering by magnons, which rapidly decreases with decreasing temperature.

References

- [1] W. Bao, et al., Phys. Rev. Lett. 78 (1997) 543.
- [2] C. Martin, et al., J. Solid State Chem. 134 (1997) 198.
- [3] H. Chiba, et al., Solid State Commun. 99 (1996) 499.
- [4] H. Fujishiro, et al., J. Phys. Soc. Jpn. 69 (2000) 2082.
- [5] M. Ikebe, et al., J. Phys. Soc. Jpn. 63 (1994) 3107.
- [6] J.B. MacCesney, et al., Phys. Rev. 164 (1967) 779.
- [7] E.A. Turov, Physical Properties of Magnetically Ordered Crystals, Academic Press, New York and London, 1965.
- [8] G.A. Slack, Solid State Phys. 34 (1978) 1.
- [9] P.G. Klemens, Solid State Phys. 7 (1958) 1.