

Available online at www.sciencedirect.com

PHYSICA

Physica B 329-333 (2003) 924-925

www.elsevier.com/locate/physb

Thermal conductivity of $Pr_{0.65}(Ca_{1-Z}Sr_Z)_{0.35}MnO_3$ under applied field

Yohei Kashiwada, Hiroyuki Fujishiro*, Manabu Ikebe

Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan

Abstract

The thermal conductivity $\kappa(T)$ of $Pr_{0.65}(Ca_{1-Z}Sr_Z)_{0.35}MnO_3$ ($0 \le Z \le 1.0$) has been measured under the applied field of up to 5 T. For Z = 0.3 and 0.4, where the ferromagnetic metal (FM-M) state is competitive with the charge/orbital ordered (CO/OO) state, $\kappa(T)$ is enhanced and shows the hysteresis below the FM-M transition temperature T_c . The hysteresis of $\kappa(T)$ is wiped out and T_c increases rapidly with the increase of the applied fields. These $\kappa(T)$ behaviors originate from the stabilization of the FM-M state due to the rapid suppression of the CO/OO state. © 2003 Elsevier Science B.V. All rights reserved.

Keywords: Pr_{0.65}(Ca_{1-Z}Sr_Z)_{0.35}MnO₃; Thermal conductivity; Ferromagnetic metal; Charge/orbital order

1. Introduction

In the $RE_{1-X}AE_XMnO_3$ manganites (RE and AE being the trivalent rare-earth elements and divalent alkaline-earth ones, respectively), the electrical and magnetic properties are dependent on the hole concentration X (band filling) and the effective one-electron bandwidth W [1]. If the average radius of $RE_{1-x}AE_x$ ions decreases, W is reduced and the charge/orbital ordered (CO/OO) state becomes dominant over the ferromagnetic-metal (FM-M) phase. By alloying a larger AE ion at a constant X, $Pr_{0.65}(Ca_{1-Z}Sr_Z)_{0.35}MnO_3$ undergoes the transition from the CO/OO insulating phase $(Z \leq 0.1)$ to the FM-M phase $(Z \geq 0.4)$ [2]. The phonon component of the thermal conductivity $\kappa(T)$ of $La_{1-X}AE_XMnO_3$ systems (AE = Ca, Sr) shows a characteristic enhancement below the FM-M transition temperature T_c [3,4]. The $\kappa(T)$ enhancement is also observed at the field-induced FM-M transition in $Pr_{0.65}Ca_{0.35}(Mn_{1-Z}Co_Z)O_3$ system [5]. In this paper, we report $\kappa(T)$ of the $Pr_{0.65}(Ca_{1-Z}Sr_Z)_{0.35}MnO_3$ system under the applied fields.

2. Experimental

The single-phase $Pr_{0.65}(Ca_{1-Z}Sr_Z)_{0.35}MnO_3$ ($0 \le Z \le 1.0$) polycrystals were prepared by a solid-state reaction method. $\kappa(T)$ was measured by a steady-state heat flow method using an automated measuring apparatus [6]. The electrical resistivity $\rho(T)$ was measured by a four-probe method. The magnetization M(T)was measured using a SQUID magnetometer under 0.5 T in the process of zero field cooling (ZFC).

3. Results and discussion

Fig. 1(a) shows M(T) as a function of temperature T. The CO/OO insulating phase is stable for $Z \le 0.1$ and the FM-M phase is stable for $Z \ge 0.6$ at low temperatures. In the intermediate Z region $(0.2 \le Z \le 0.4)$, the CO/OO insulating phase is competitive with the FM-M phase. Figs. 1(b) and (c) show $\rho(T)$ of the Z = 0.3 and 0.4 samples, respectively. For Z = 0.3, the characteristic $\rho(T)$ upturn is observable below the CO/OO transition temperature $T_{CO} = 210$ K and the FM-M state is induced below $T_{c(down)} = 70$ K and $T_{c(up)} = 100$ K in zero field. In the 2 T field, T_c increases rapidly with applied fields and the hysteretic $\rho(T)$ behavior is

^{*}Corresponding author. Fax: +81-19-621-6373.

E-mail address: fujishiro@iwate-u.ac.jp (H. Fujishiro).

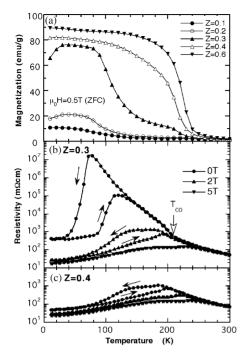


Fig. 1. (a) M(T) for the $Pr_{0.65}(Ca_{1-Z}Sr_Z)_{0.35}$ MnO₃ samples (0.1 $\leq Z \leq 0.6$). The electrical resistivity $\rho(T)$ of the (b) Z = 0.3 and (c) 0.4 samples under the magnetic fields.

completely wiped out at 5 T. For Z = 0.4, the hysteresis of $\rho(T)$ can be seen at 0 T, which is completely wiped out for $B \ge 2$ T. The hysteresis suggests the survival of the CO/OO order at 0 T.

Figs. 2(a) and (b) show $\kappa(T)$ of the Z = 0.3 and 0.4 samples under the applied fields. In both samples, $\kappa(T)$ is overwhelmingly due to phonons. In Fig. 2(a), at 0 T on the cooling run, $\kappa(T)$ is enhanced below $T_{c(down)} =$ 70 K and then reaches a maximum at 40 K and decreases with decreasing T. On the subsequent heating run, $\kappa(T)$ is drastically reduced at $T_{c(up)} = 90$ K and monotonously increases with the further increase of T. When the 2 T field is applied, the hysteretic $\kappa(T)$ behavior becomes broarder and $T_{c(down)}$ and $T_{c(up)}$ rapidly increase to ~ 200 K. For the applied field of 5 T, $\kappa(T)$ does not show the hysteresis and T_c increases to 220 K. In Fig. 2(b), the absolute values of $\kappa(T)$ are larger than those for Z = 0.3 and the hysteresis is observable only at 0 T. These hysteretic $\kappa(T)$ behaviors are consistent with those of $\rho(T)$ as shown in Fig. 1. In accord with $\rho(T)$ and $\kappa(T)$ behaviors, the thermal expansion dL(T)/L of the Z = 0.3 sample (not shown) shows a clear contraction below T_c accompanying a large hysteresis in 0 and 2 T.

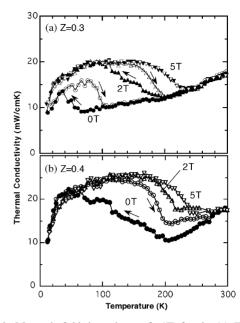


Fig. 2. Magnetic field dependence of $\kappa(T)$ for the (a) Z = 0.3 and (b) Z = 0.4 samples.

With increasing mobility of the charge carriers due to the metallic conduction, the local Jahn–Teller (JT) lattice distortion is relaxed in the FM-M phase as the observed contraction of dL/L indicates [4]. The $\kappa(T)$ enhancement below T_c is considered to originate from the reduced phonon scattering as a result of the relaxed local JT distortion. The disappearance of the hysteresis in $\kappa(T)$ suggests that the CO/OO phase gives place to the FM-M phase in the applied field and the existence of the CO/OO phase brings about the rapid increase of T_c in the applied field.

References

- A. Asamitsu, Y. Moritomo, Y. Tomioka, T. Arima, Y. Tokura, Nature 373 (1995) 407.
- [2] M.R. Lees, J. Barratt, G. Balakrishnan, D. McK. Paul, C. Ritter, Phys. Rev. B 58 (1998) 8694.
- [3] M. Ikebe, H. Fujishiro, Y. Konno, J. Phys. Soc. Japan 67 (1998) 1083.
- [4] H. Fujishiro, M. Ikebe, in: H. Ohyanagi, A. Bianconi (Eds.), Physics in Local Lattice Distortions, AIP, New York, 2001, p. 433.
- [5] H. Fujishiro, S. Kanoh, H. Yamazaki, M. Ikebe, J. Phys. Soc. Japan 70 (2001) 2616.
- [6] M. Ikebe, H. Fujishiro, T. Naito, K. Noto, J. Phys. Soc. Japan 63 (1994) 3107.