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Spin versus lattice polaron: Prediction for electron-doped CaMnO3
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CaMnO3 is a simple bipartite antiferromagnet~AF! that can be continuously electron doped up to LaMnO3.
Electrons enter the doubly degenerateEg subshell with spins aligned to theS5

3
2 core of Mn41(T2g

3↑). We take
the Hubbard and Hund energies to be effectively infinite. Our model Hamiltonian has twoEg orbitals per Mn
atom, nearest-neighbor hopping, nearest neighbor exchange coupling of theS5

3
2 cores, and electron-phonon

coupling of Mn orbitals to adjacent oxygen atoms. We solve this model for light doping. Electrons are confined
in local ferromagnetic~FM! regions~spin polarons! where there proceeds an interesting competition between
spin polarization~spin polarons!, which enlarges the polaron, and lattice polarization~Jahn-Teller polarons!,
which makes it smaller. A symmetric seven-atom ferromagnetic cluster (Mn7

271) is the stable result, with a net
spin S52 relative to the undoped AF. The distorted oxygen positions around the electron are predicted. The
possibility that two electrons will form a bipolaron has been considered. A fairly modest Coulomb repulsion
Uc50.98utu ~where t'20.75 eV! will destroy any simple bipolaron. Therefore we do not expect phase
separation to occur. The model predicts a critical dopingx.0.045 where the polaronic insulator becomes
unstable relative to a FM metal.

DOI: 10.1103/PhysRevB.64.064401 PACS number~s!: 75.30.Vn, 75.50.Ee, 71.38.Ht
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I. INTRODUCTION

CaMnO3 is a bipartite (G-type! antiferromagnetic~AF!
insulator1 with a Néel temperatureTN5125 K and almost
perfect cubic perovskite crystal structure. There is not a la
amount of literature on this material. It deserves attention
a particularly simple case of an AF insulator that can
electron doped. The (T,x) phase diagram2,3 of the
Ca12xLaxMnO3 series has attracted attention because of
fascinating interplay of spin order, orbital order, and meta
versus insulating transport. ‘‘Colossal magnetoresistan
occurring at concentrationx'0.65 andT'250 K is the
most dramatic manifestation.4 For smallx, magnetization and
conductivity measurements5,6 suggest local ferromagneti
~FM! regions or ‘‘spin polarons’’ in the range 0.02,x
,0.06. In this paper we use a model for pure CaMnO3, the
x50 end member, and predict its behavior under light d
ing x!1. We keepT equal to 0 and neglect lattice zero-poi
energy, but allow both spin and lattice coordinates to rela

Our main question is, what is the ground state of an
cess electron in CaMnO3? The answer to this question wi
also apply to lightly doped CaMnO3 provided the doped stat
is homogeneous. Our model has four parameters.~1! The
bandwidth parametert governs the effective MnEg electron
hopping between Mn31 and Mn41 through the intervening
oxygen. The spins of the two Mn ions must be parallel as
the usual ‘‘double-exchange’’ model.7,8 ~2! The magnetic ex-
change parameterJ couples spins of first-neighbor Mn ions
due to virtual hopping ofT2g electrons.~3! The electron-
phonon coupling constantg describes interactions betwee
Mn Eg orbitals and the six nearest oxygen atoms.~4! Oxygen
displacementsu are opposed by the restoring force2Ku,
wherev5AK/M is an Einstein frequency assigned to ox
gen vibrations along the bonds. There are two important
mensionless parameters. Spin polarons9 are controlled by the
ratio b5t/JS2. Jahn-Teller~JT! lattice polarons10 are con-
trolled by the parameterG5g2/Kt.11 Balancing these com
0163-1829/2001/64~6!/064401~8!/$20.00 64 0644
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peting effects, we find the most favorable local FM sp
arrangement, lattice distortion, and electron wave functi
As doping increases, we predict a transition from polaro
insulator to FM metal.

II. MODEL HAMILTONIAN

The Mn41 ion in CaMnO3 has a configuration 3d3, i.e.,
the three spin-alignedT2g states (xy,yz,zx) are filled with
electrons, while the two spin-alignedEg states@c25(x2

2y2)/A3,c353z22r 2# are empty and lie above by th
crystal-field splitting. The empty opposite-spinT2g states are
split to even higher energy by the Hund termJH . Light
electron doping puts carriers into the doubly degenerateEg
level. Hopping of the (ddp)-type occurs fromT2g to T2g
and of the (dds)-type from Eg to Eg , but no Eg to T2g
hopping matrix element exists because of the simple cu
structure. VirtualT2g hopping12 ~at the cost of Hubbard en
ergy U) gains delocalization energy if adjacent spins a
antiparallel. This gives anS5 3

2 antiferromagnetic Heisen
berg Hamiltonian with exchange couplingJ52(ddp)2/U,13

U being large compared with (ddp),14 and agrees with the
experimentally observed magnetic structure of pu
CaMnO3. The ground state has↑ spins on theA sublattice
@when exp(iQW •lW)51, wherelW labels the Mn sites# and↓ spins
on the B sublattice @when exp(iQW •lW)521] with QW
5(p,p,p).

Ignoring for now the electron-phonon terms, the Ham
tonian for an excess electron isH5Ht1HJ . The first term
contains hopping of MnEg electrons to nearest neighbors

Ht5t(
l ,6

@L~ lW, lW6 ẑ!c3
†~ lW6 ẑ!c3~ lW !

1rotations tox̂,ŷ directions#, ~1!

L~1,2!5cos
u1

2
cos

u2

2
1sin

u1

2
sin

u2

2
e2 i (f12f2). ~2!
©2001 The American Physical Society01-1
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Here c3( lW) destroys an electron statec3(rW2 lW) on the Mn
atom atlW, lW6 ẑ labels the Mn neighbors above and below t
one at sitelW, and t is the (dds) integral from the Slater-
Koster two-center theory.15 We use a valuet520.75 eV
obtained from fitting the band structure of CaMnO3 ~Refs. 16
and 17! ~see Sec. III!. The factorL(1,2) comes from locally
rotating the axis of spin quantization for thei th Eg electron
into the direction (u i ,f i) of the i th S5 3

2 core spin, treating
the angles (u i ,f i) as classical parameters and discard
from the Hilbert space the state with spin opposite to the c
spin @i.e., assumingJH→` ~Refs. 17 and 18!. In this paper,
we usually take the spins to be perfectly ordered atT50,
that is, u5u12u2 equals 0 orp, corresponding toL(1,2)
equal to 1 or 0 for FM or AF oriented neighbors. We w
also consider uniformly canted states where a relative a
u5p2u0 occurs ~with f12f250), so thatL takes the
value sin(u0/2). These spin orientations are shown
Fig. 1.

The rotation of c3 to the x̂ axis is (2c31A3c2)/2
53x22r 2, and to theŷ axis it is (2c32A3c2)/253y2

2r 2. Using these, we rewriteHt in the usual orthonorma
basis (c2 ,c3),

Ht5t (
l ,d5x,y,z

~c2
†~ lW ! c3

†~ lW !!TdS c2~ lW6 d̂ !

c3~ lW6 d̂ !
D , ~3!

where it is understood that the hopping only operates
tween parallel spin Mn atoms. The hopping matrices are

Tx5S 3

4
2

A3

4

2
A3

4

1

4
D , Ty5S 3

4

A3

4

A3

4

1

4
D ,

Tz5S 0 0

0 1D . ~4!

The HJ term is the AF nearest-neighborT2g exchange

FIG. 1. Schematic spin structures for the antiferromagneticG
~AFG!, ferromagnetic~FM!, and antiferromagneticC ~AFC! struc-
tures and interpolating canted structures.
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HJ5 (
^ l ,l 8&

JSW ~ lW !•SW ~ lW8!. ~5!

Mean-field theory gives the valueJS253.23 meV for the
exchange coupling@we use a quantum treatment for spin3

2

and the measured Ne´el temperatureTN5125 K ~Ref. 19!#.
Corrections to mean-field theory for the Heisenbe
antiferromagnet20–22 increaseJS2 to 4.74 meV. This gives
t/JS25158, with a probable uncertainty of 10%. The phon
parts of the Hamiltonian are given in Sec. V.

III. UNIFORM SOLUTIONS

First consider the hypothetical case of a uniform FM sp
order. Then a doped-in electron could hop without payin
Hund penalty, and extended Bloch states would form w
wave functions

Ck5d2

1

AN
(

l
eikW• lWc2~ lW !1d3

1

AN
(

l
eikW• lWc3~ lW !, ~6!

whered2 ,d3 are coefficients. Diagonalizing Eq.~3!, the re-
sulting energy eigenvalue, taking into consideration thatt is
negative, is

E~kW !

utu
52coskx2cosky2coskz

7~cos2 kx1cos2 ky1cos2 kz2coskx cosky

2cosky coskz2coskz coskx!
1/2. ~7!

At coskx5cosky5coskz51, the energy is minimum,E(kW
50)523utu, the state being doubly degenerate. Althou
the actual spin arrangement is not FM, the resultu3tu sets a
useful scale for the maximal energy gain from electron de
calization. Also, the dispersion relation~7! can be fitted to a
FM CaMnO3 majority-spin band structure calculated
density-functional theory,16 determining the hopping energ
t520.75 eV.

For light doping, the magnetic energy Eq.~5! of antifer-
romagnetic order (2zJNS2/2 for classical spins;N is the
number of Mn ions! is much larger than the hopping energ
As discussed by de Gennes,23 the best uniform solution~for
a one-band model! is a compromise where antiferromagne
spins cant uniformly toward FM solutions. Start from th
Néel AF structure and let all spins tilt towards thex̂ direction
with angleu/2, as shown in Fig. 1. This costs magnetic e
ergyDEJ5zNJS2(12cosu)/2. A doped-in electron can now
delocalize, reducing its energy by23utusin(u/2). For small
doping x5n/N!1, the total hopping energy isDEt5
23nutusin(u/2). Therefore when sin(u/2)5xutu/4JS2, the to-
tal energy DE5DEJ1DEt is minimum, 23Nx2t2/8JS2.
From this estimate, the system cants all the way to FM wh
the optimal u equals p, which occurs atx54JS2/utu
.0.025.

Because the doubly degenerateEg electrons hop aniso
tropically, a better canted solution exists. Let all spins w
exp(iKW •łW)51 @KW is (0,p,p)] tilt towards 1 x̂ and all spins
1-2
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SPIN VERSUS LATTICE POLARON: PREDICTION . . . PHYSICAL REVIEW B64 064401
with an exp(iKW •łW)521 tilt towards2 x̂ with an angleu/2, as
shown in Fig. 1. The magnetic energy cost is reduced
DEJ5zNJS2(12cosu)/6, but the delocalizaton energy low
ering is also reduced toDEt522nutusin(u/2). This type of
canting terminates inC-type antiferromagnetism whenx
52JS2/t, as shown in Fig. 1. Figure 2 summarizes our
sults for the energies of uniform solutions vsx.

IV. PURE SPIN-POLARON EFFECT

Experimentally, CaMnO3 is insulating at a small dopingx.
This rules out uniform solutions with electrons doped in
delocalized states. The simplest picture is that each do
electron is localized on one Mn site, creating a local Mn31

with spinS52 in an AF background, for a spin excess of1
2 .

This does not agree with the measured satura
magnetization,5 which has been interpreted in terms of loc
spin flipping ~net excess spin of 2! in the region 0.02,x
,0.08. Local spin flipping leads to local FM regions~called
spin polarons! around doping centers, allowing the dop
electron to gain delocalization energy. In this section we d
cuss candidate localized ground states of a singleEg elec-
tron, using the same HamiltonianH5Ht1HJ .

First we make a continuum~effective-mass! approxima-
tion in the spirit of Nagaev.9 Inside the local FM region,

FIG. 2. Energy per electron of various doped states. Elec
concentrationx is measured in units of 1/b[JS2/utu. Bold lines
denote the most favorable uniform states. Nonuniform~polaron!
states~discussed in Sec. VI, usingG50.25! are denoted by dot-
dashed lines for the various values ofb indicated. Among different
extended states, AFC lies lowest frombx52;4, and FM takes
over abovebx54 (x.0.025). For light doping, the inhomoge
neous polaron states are stable. Asx increases, uniform states tak
over. The transition from polaron-doped AFG to FM occurs ax
.0.045 ~using G50.25, t50.75 eV, JS254.74 meV, b.158).
Notice that the value ofb determines the critical dopingxc of the
phase transition and even the transition type, as smallb results in
an AFG to AFC transition, rather than to FM. But for smallb the
predictedxc can be large enough to exceed the light-doping
proximation used here.
06440
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electrons hop like free electrons with inverse band m
1/m* 5(a/\)2utu given by Eq.~7!, with a the perovskite lat-
tice constanta.3.73 Å . This electron sits in a spherica
well with infinite walls at radiusR, whose depth is23utu.
G-type antiferromagnetism resumes forr .R. The ground-
state energy of the electron in this polarized region is the

DEt5utuS 231
p2a2

2R2 D , ~8!

where the second term is the zero-point energy in the w
The magnetic energy cost from spin canting is

DEJ5zJS2~4pR3/3a3!, ~9!

where the last factor is the number of Mn atoms in the cl
ter. Optimizing DE5DEt1DEJ over R, the optimal size
cluster has a number of Mn atoms inside the sphere equ

4

3
pS R

a D 3

5
4

3
pS putu

4zJS2D 3/5

.26. ~10!

This is close to the optimum 25-site symmetric cluster t
we will find by exact diagonalization and show in Table
However, we will also find a smaller asymmetric cluster
lower energy.

It is interesting that continuum theory gives a lower e
ergy if the regionr ,R is canted rather than fully FM. TheA
sublattice is fixed for allr, but theB sublattice is tilted to-
ward theA sublattice by an angleu for r ,R. Then the op-
timum tilting angle is 180° ~FM! for b5t/JS2.bc

5(7p2/18)5/24z/p.220, while for smallerb, the optimal
tilting angle is sin(u/2)5b/bc . Our estimated value isb
.158, which givesb/bc.0.72. So the spins inside radiusR
are approximately 90° apart, and the optimum cluster s
increases to 31.

Now we repeat the calculation using the true discr
Hamiltonian. First consider flipping only one spin. In th
way, the spin-flipped Mn~the central site!, along with its six
nearest neighbors, form a seven-site cluster with all se
spins parallel. The cluster is invariant under transformatio
of the point groupOh . If the central Mn spin is kept un-

n

-

TABLE I. Ground-state energy of symmetric clusters, with on
spin polaron effects included, i.e., from exact diagonalization
Ht1HJ in the 2M dimensional subspace, whereM is the number of
Mn sites in the clusters and each Mn atom has two relevantEg

orbitals. The 25-site cluster gives the lowest ground-state ene
The last column usest520.75 eV andJS254.74 meV.

Cluster Number of Energy gain from Ground-state
sizeM spins flipped hopping (utu) energy~eV!

1 0 0 0
7 1 2A3521.732 21.242
25 6 22.330 21.406
51 13 22.449 21.097
57 14 22.380 20.989
63 19 22.600 20.869
1-3
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YIING-REI CHEN AND PHILIP B. ALLEN PHYSICAL REVIEW B 64 064401
flipped, but instead the spins of those six nearest neigh
are flipped, a 25-siteOh-symmetric cluster is formed. Simila
steps can be taken to obtain larger and larger symmetric c
ters. We will not look at candidate states with canted sp
except for one special case to be mentioned later.

Each spin flip costs magnetic energy 632JS2. Since
spins are parallel inside the cluster, the electron can
among theEg orbitals of all the spin-aligned Mn ions, with
corresponding energy lowering from delocalization. Tabl
shows numerical values of ground-state energy found by
act diagonalization of 2M32M Hamiltonian matrices for
symmetric clusters ofM Mn atoms, ranging in size fromM
51 to 63. The ground states are all doubly degenerateg

representation! because of theOh symmetry of the cluster.
Asymmetric clusters are also possible. If we flip one s

at site lW and another one at sitelW1 x̂1 ŷ, a 12-site cluster is
formed. Starting from this 12-site cluster, there are four d
ferent ways to create a larger cluster with one more flipp
spin, as shown in Fig. 3. Other possibilities are less clos
packed, such as the 13-site cluster shown in the figure,
other 3-spin-flipped cases not shown here. The ground-s
energy of these examples are calculated, as shown in T
II. For our chosen values oft and JS2, the most favorable
spin polaron is an asymmetric 17-site cluster with th
flipped spins.

There are many possible variations with inhomogeneou
canted spins, of which we considered only one, a 25-
cluster with the seven inner atoms canted rather than fe
magnetically aligned with the outer 18 atoms. This interp
lates between the seven- and the 25-atom cluster. With
canting, the seven- and 25-atom cluster become equal in
ergy for the valueutu/JS2.100, smaller than our preferre
value of 158. It turned out that in the range 94,utu/JS2

,104, the locally canted state was lower in energy than
ther the seven- or the 25-atom pure ferromagnetic cluste

FIG. 3. Different asymmetric clusters: as2-1 and as2 have
spins flipped; the four types of as3 have three spins flipped.
06440
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V. LATTICE POLARON EFFECT

The degenerate ground state, found in the previous
tion for symmetrical spin polarons, is Jahn-Teller~JT!
unstable.24 We now add to our Hamiltonian lattice disto
tions, controlled by the electron-phonon interaction. T
only lattice degrees of freedom included are oxygen moti
along the bonds to the nearest two Mn ions. If an oxyg
moves along this bond a distanceu, it gets closer to one Mn
atom and farther from another. This will raise bygu ~for the
closer Mn! or lower bygu ~for the farther Mn! the energy of
any occupied MnEg state of the type that points toward th
oxygen~that is, the 3z22r 2 state if oxygen motion in theẑ
direction is considered.! We use adiabatic approximatio
~oxygen mass→`) and treat the oxygen distortions as cla
sical parameters. Each Mn ion is surrounded by six oxyg
whose distortion amplitudes@ud( lW6 d̂/2),d̂5 x̂,ŷ,ẑ# form
basis vectors for a representation ofOh , namely,a1g% eg
% t1u . The vector representationt1u contains the distortions
uz( lW1 ẑ/2)1uz( lW2 ẑ/2), etc. The remaining three degrees
freedom@Qz5uz( lW1 ẑ/2)2uz( lW2 ẑ/2),etc.# form basis vec-
tors of a1g @Q15(Qx1Qy1Qz)/A6# and eg @Q25(Qx

2Qy)/2,Q35(2Qz2Qx2Qy)/A12], in Van Vleck
notation.25 The oxygen distortions are limited by a harmon
restoring force, e.g.,2Kuz( lW6 ẑ/2).

The lattice elastic energy and electron-phonon interac
terms of the Hamiltonian are26

HL5
K

2 (
l

FuxS lW1
1

2
x̂D 2

1uyS lW1
1

2
ŷD 2

1uzS lW1
1

2
ẑD 2G ,

~11!

Hep52
4g

A3
(

l
@cz

†~ lW !cz~ lW !Qz~ lW !

1rotations tox̂, ŷ directions#. ~12!

Hep can be split into two parts, JT and ‘‘breathing:’’

Hep5HJT1Hbr , ~13!

where, in Van Vleck notation,

o

TABLE II. Ground-state energy of asymmetric clusters, w
only spin-polaron effects included. The as3-4 cluster gives an e
lower ground-state energy than the 25-site cluster shown in Tab

Cluster Number of Energy gain from Ground-stat
sizeM spins flipped hopping (utu) energy~eV!

12 ~as2-1! 2 21.936 21.338
13 ~as2-2! 2 22 21.386
16 ~as3-2! 3 22.015 21.341
17 ~as3-1! 3 21.936 21.281
17 ~as3-3! 3 21.984 21.317
17 ~as3-4! 3 22.145 21.438
1-4
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SPIN VERSUS LATTICE POLARON: PREDICTION . . . PHYSICAL REVIEW B64 064401
HJT52g(
l

@c2
†~ lW !c3

†~ lW !#S Q3~ lW ! Q2~ lW !

Q2~ lW ! 2Q3~ lW !
D S c2~ lW !

c3~ lW !
D ,

~14!

Hbr522A2g(
l

Q1~ lW !~c2
†~ lW !c2~ lW !1c3

†~ lW !c3~ lW !!.

~15!

The vector distortions (t1u) do not couple toEg electron
states and therefore do not appear.

A simple case shows howHJT splits energy degeneracy
Suppose a doped electron is localized at a single Mn s
with no hopping or spin flipping considered. The twoEg
states at that Mn are the only degrees of freedom for
electron and are originally degenerate. When the six
rounding oxygen distortions are considered, the degene
is lifted in HJT:

HJT52g~c2
†c3

†!S Q3 Q2

Q2 2Q3
D S c2

c3
D ~16!

52g~a† b†! S 2Q 0

0 QD S a

b D , ~17!

where

S a†

b†D 5S cos
f

2
2sin

f

2

sin
f

2
cos

f

2

D S c2
†

c3
†D

and (Q2 ,Q3)5Q(sinf,cosf). The change in energy due t
HJT1Hbr1HL is DE522A2gQ162gQ112(Q1

21Q2)/2.
The energy splitting62gQ comes only from the JT term
The optimal distortions areQ154A2g/K and Q54g/K,
which give the maximum energy lowering of the grou
stateDE526g2/K.

The anglef does not enterDE. This continuous degen
eracy can be lifted either by adding kinetic energy and qu
tization of lattice degrees of freedom~dynamic JT effect! or
else by introducing higher-order anharmonic terms
Hep.27,28 However, later in the discussion of the seven-s
cluster, we shall show how this continuous degenerac
naturally removed by the increase of electronic and lat
degrees of freedom.

It is interesting to consider what would happen if spi
were ferromagnetically ordered, so that magnetism wo
not assist localization. Then polaron formation can only
cur through lattice distortion and is prohibited when the d
localization energy per electron is larger than the pola
energy, i.e., whenG5g2/Kutu is less than a critical value
close to 0.5. We believe thatG is close to 0.25, so that in th
hypothetical ferromagnetic case, polarons would not fo
Antiferromagnetic confinement is needed before a lattice
laron effect occurs. LaMnO3 is different in this respect; its
cooperative Jahn-Teller ground state makes polaron for
tion easier.11
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VI. THE SEVEN-SITE CLUSTER: SPIN AND LATTICE
POLARON

With the full Hamiltonian considered, the seven-site clu
ter turns out to be the most important one, as shown late
this section. Only a single spin is flipped. Inhomogeneo
canting will not be favored for this state. By understandi
its ground state algebraically, we learn several interes
aspects of the influence ofHep in the Hamiltonian. The di-
mensionless parameterG[g2/Kt characterizing the strengt
of electron-phonon coupling has a value near 0.25
LaMnO3, and we assume that the value for for CaMnO3 is
similar, i.e., 0.20,G,0.30.30,29We will measure energies in
units of utu, using dimensionless lattice variablesQ8
[AK/utuQ. The prime inQ8 is suppressed from here on.

To study the ground state of a single electron in the sev
site cluster, a 14-dimensional Hilbert space is used, con
ing of atomicEg orbitals from each of the seven Mn atom
Later when we turn onHep, we will find that for smallG,
fewer than 14 basis functions are needed for the ground-s
calculation. The 14-dimensional space can be decompo
into seven irreducible representations of point groupOh ,
namely, A1g% A2g% T1u% T2u% 3Eg . When lattice distor-
tions are absent (G50,Hep5HL50), these functions diago
nalize the 14-dimensionalHt . The threeEg-type basis func-
tions (c2

1 ,c3
1), (c2

0 ,c3
0), and (c2

2 ,c3
2) are degenerate

separately with eigenvalues1A3utu, 0, and2A3utu. These
six states, along with theA1g state~with eigenvalue 0!, will
be the main states of interest whenGÞ0. All other states
stay absent as long asG is small.

When GÞ0, Hep and HL are turned on. Amplitudes o
lattice distortions appear linearly in the matrix representat
of Hep and quadratically in that ofHL . Since these lattice
distortions are of orderAG whenG!1, Hep andHL can be
treated as perturbations toHt . In the following, all lattice
distortion modes will be introduced. Then second-order p
turbation of the original ground states (c2

2 ,c3
2) can be ex-

pressed in terms of these modes and shows that most of t
modes do not participate in the ground-state lattice dis
tion. This will in turn eliminate the need for considerin
electron states of symmetries that couple to the absent m
only. Finally, from the form of the perturbed ground-sta
energy, the pattern of its optimized lattice distortion will b
derived and compared to the exact numerical result.

There are 36 oxygens adjacent to one or more Mn ato
in the seven-atom cluster, so there are 36 distortion par
eters inHep. These can be organized into sets of basis v
tors for irreducible representations of the point groupOh ,
namely, 3a1g% a2g% 5t1u% 3t2u% 4eg . The a1g-type modes
are denoted as (qi1, wherei 51,2,3), and theeg-type modes
are denoted as (qi2 ,qi3), where i 51,2,3,4. The matrix ele-
ments ofHep can be reexpressed in terms of these mod
andHL is simply (modesqmodes

2 /2.
Second-order perturbation theory shows that for smallG,

many of these modes appear only quadratically with posi
coefficients and hence should be optimized to 0. For lar
G, these coefficients start to turn negative, and the co
sponding distortions start to develop. The critical values
G50.443 for the appearance of thet1u and q43 distortion,
1-5
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G51.30 for t2u , andG50.819 fora2g andq42. It will thus
happen that asG increases, the symmetry of the ground-st
electron wave function and lattice distortion pattern is gra
ally lowered by the successive appearance of these di
tions.

We therefore ignore the above modes for the actual ra
G'0.2560.05. This eliminates the presence of electr
states ofA2g , T1u , andT2u symmetry. The remaining mode
are three sets of (qi1 ,qi2 ,qi3), with i 51,2,3, of the inner,
intermediate, and outer oxygen layers, respectively. Deg
erate first-order perturbation theory for (c2

2 ,c3
2) shows that

the ground-state energy ofHt splits into

E(1)

utu
52A32AG~A2Q17AQ2

21Q3
2!, ~18!

Q1[
1

3
q111

1

6
q211

1

12
q31,

Q2[
1

3
q121

1

6
q221

1

12
q31,

Q3[
1

3
q131

1

6
q231

1

12
q33.

Thus at first order, there is still a continuous degeneracy
the sense that the energy JT splitting depends only onQ
[AQ2

21Q3
2, not onf[tan21(Q3 /Q2).

To include second-order perturbations, for simplicity, w
treat analytically only the distortion modes from the inn
oxygen layer (q11,q12,q13). The number of related elec
tronic states is now reduced to five, namely, (A1g ,c2

1 ,c3
1)

and (c2
2 ,c3

2). In this five-dimensional subspace, the Sch¨-
dinger equation to be solved can be expressed as follows~not
including HL , which is always proportional to the identit
matrix!:

S H t
II 1Hep

II 2E hep

hep
T H t

I1Hep
I 2E

D S C II

C I D 50, ~19!

where C I[(c2
2 ,c3

2) and C II [(A1g ,c2
1 ,c3

1). We obtain

an effective HamiltonianHeff5H t
I1Hep

I 2hep
T (H t

II 1Hep
II

2E)21hep for C I . SinceE should be very close to2A3utu
for small perturbation, we takeE as 2A3utu31(333) and
ignore Hep

II in the denominator. TheHeff obtained this way
shows that the degeneracy of (c2

2 ,c3
2) is now lifted to be-

come~including HL)

E(2)

utu
52A32A2A2S 4A3

3
2

9

2G D ~A21r2!6Ae,

e[
4

3
r41

32

3
A2r21

8A6

3
Ar21r2

1
4

3
r3~4A2A1A3!cos~3u!, ~20!

where we introduce the notation
06440
e
-

or-

e

n-

in

r

A[
AG

3
q11, r[AB21C2,

B[
AG

3
q12[r sinu, C[

AG

3
q13[r cosu.

We see that cos 3u should be11 to minimize the ground-
state energy. Hence the degeneracy of ground states is
continuous anymore and has become threefold. This fea
agrees with the numerical result. The ground-state electro
wave function ofu50 is shown in Fig. 4. A rotation tha
brings ẑ to x̂ ( ŷ) will generate the wave functions ofu
52p/3 (u54p/3).

VII. NUMERICAL RESULTS

Now we consider the full HamiltonianH5Ht1HJ
1Hep1HL for all clusters examined in Sec. IV. FM spi
alignment facilitates hopping and causes energy lower
from delocalization, therefore encouraging the polaron
grow. However, asG increases, the JT splitting will becom
the dominating influence on the ground-state energy. Gre
localization enhances the JT energy lowering, which
creases localization of the electron. On the other hand,HJ
andHL serve as penalties for spin misalignment and latt
distortions. Our numerical studies find the optimal resolut
of the competition between these effects. The seven-site c
ter becomes favored fromG.0.18, as shown in Fig. 5. an
Fig. 6. For all clusters considered, whenG becomes large
enough, the size of the ground-state wave function shrink
become that of the seven-site polaron, as shown in Fig
Enlarging the size of the FM cluster to enhance delocali
tion energy is then disfavored by the strong lattice pola

FIG. 4. One of the possible ground-state wave functions in
seven-site cluster. The corresponding lattice distortion pattern
q1 andq3 components.
1-6
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effect. It is also clear that for extremely largeG, the one-site
lattice polaron will be the only form of electron state th
exists.

Our numerical calculation predicts the lattice distorti
pattern of the seven-site ground state. ForG50.25, t
50.75 eV, andK527.2 eV/Å2 ~obtained from Raman
scattering in LaMnO3), the ground state shown in Fig. 4 ha
oxygen displacement parametersq11.1.1, q13.0.78, and
q1250, which gives an outward displacement of 0.15 Å
the ẑ direction and smaller outward displacements
0.036 Å in both x̂ and ŷ directions for the six oxygens
surrounding the central Mn. Displacements of oxygens in

FIG. 5. Numerical results for ground-state energy (Egs) of sym-
metric clusters, obtained by diagonalizingHt1HJ1Hep1HL in the
2M dimensional subspace.

FIG. 6. Numerical results for ground-state energy (Egs) of
asymmetric clusters, obtained by diagonalizingHt1HJ1Hep1HL

in the 2M dimensional subspace. The symmetric seven-site clu
is also shown here as it becomes the optimal solution wheG
exceeds 0.2.
06440
f

e

intermediate and outer layers are at least 10 times smalle
predicted perturbatively,t1u , t2u , a2g , q42, andq43 distor-
tions are absent.

VIII. TWO-ELECTRON PROBLEM

When two electrons are too close to be considered
lated, it is interesting to see if they form a bipolaron. Witho
introducing additional parameters in our Hamiltonian, w
look at the two-electron problem for the extreme cases wh
the on-site Coulomb repulsion, or the HubbardU, is 0 or`.
Here again we consider the FM clusters mentioned ea
and look atG50.25 only.

For U50, the ground-state energy of a bipolaron is giv
when the single-electron ground state and first excited s
are both occupied. With the lattice distortion re-optimiz
numerically, we find that the seven-site cluster has the low
bipolaron ground-state energy, which is 0.74utu lower than
two separate polarons. However, whenU→` ~with no
nearest-neighbor repulsion considered! in the same seven
site cluster~with lattice distortion again reoptimized! the bi-
polaron ground state is lifted up to become 0.86utu higher
than two separated polarons. We then variedU to find the
critical value above which a bipolaron does not occur. Co
sidering only the seven-site cluster, we obtainUc'0.98utu, a
very small value, about 0.74 eV.

For a more careful investigation, different shapes of cl
ters should be considered, as well as different spin orie
tions inside the clusters. Since bipolarons have a larger
than polarons, the variety of possible shapes and spin
tures is therefore also larger. A continuum calculation sim
to that in Sec. IV shows that, without electron-electron int
action, the optimal size of a FM bipolaron contains 50 M
atoms. For a realistic theory, on-site and nearest-neigh

er

FIG. 7. Numerical results for the ground-state radius of symm
ric clusters. The radius is measured in units of lattice constanta ~the

Mn-Mn separation distance! and is defined to be@( i(rW i

2^rW&)2c i
2#1/2, where the indexi runs over all Mn sites inside the

cluster, and̂ rW&[( i rW ic i
2 .
1-7
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Coulomb repulsions should both be included. Our res
suggest that bipolarons are likely to be unstable relative
polarons, and phase separation is not likely to happen.

IX. DISCUSSION

When dopingx is nonzero, one should ask whether loc
ized polaron solutions will distribute homogeneously or w
attract, causing phase separation.31 We have not addresse
this issue, which requires a more complicated calculat
with additional Coulomb parameters in the Hamiltonian. E
periment is consistent with a concentration interval up tox
50.08 where polarons are homogeneously distributed.5 Our
model shows that by this concentration, randomly distribu
seven-site polarons will overlap significantly. However, o
model also shows that at concentrations whenx.0.045, po-
larons should be unstable relative to an undistorted gro
state with FM spin order and metallic conduction by t
doped electrons. This effect is not seen in experiments.
parently alternate ground states, possibly involving organ
tion of polaronic distortions, occur and enable the system
te
.

ek

,

ys

m

ys

06440
ts
to

-

n
-

d
r

d

p-
a-
to

remain nonmetallic. Without additional physics~such as de-
fects!, our model cannot account for the observation5 that La
concentrations withx less than 0.02 yield less of an exce
moment than expected from seven-site polarons.

Our model describes the competing spin- and lattice
laron effects. We believe that it contains the main featu
needed to describe the system. A test would be measure
of the oxygen displacements, which our model predicts. T
model omits nonadiabatic phonon effects, spin quantizat
temperature, and polaron-polaron interactions.32 For higher
doping levels orT.0, these may have a larger influence a
present challenges that could be worth pursuing if exp
mental guidance improves.
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