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A new experimental setup and analysis method for simultaneous determination of the anisotropic thermal conductivities (κx , κy)
is proposed for materials with uniaxial anisotropy or a layered structure. By applying heat power diagonally through the sample
from a heater to a cold finger, temperature differences (�Tx , �Ty) along the two directions were monitored. The monitored
temperature differences were compared with�T ′

x and�T ′
y , which were calculated by solving a two-dimensional heat diffusion

equation. Calculations were repeated until�T ′
x and�T ′

y agreed with�Tx and�Ty , to determineκx andκy . This technique
was applied to a carbon-fiber-reinforced plastic (CFRP) from 40 K to 200 K and a satisfactory agreement was achieved with the
κx andκy values and those determined from independent measurements ofκx andκy .

KEYWORDS: anisotropic materials, anisotropic thermal conductivity, low temperature, heat diffusion equation, identical experi-
mental setup

1. Introduction
In the field of low-temperature physics and cryogenic en-

gineering, many structurally anisotropic materials [e.g. sin-
gle crystals of high-Tc superconductors and fiber-reinforced
plastics (FRPs)] are used as functional and constructive ma-
terials. It is very important to investigate their anisotropic
natures in terms of their mechanical, electrical and ther-
mal transport properties. The thermal conductivityκ(T ) is
a valuable parameter for practical use such as in the de-
sign of cryostats and power leads for superconducting mag-
nets.1) As shown in Fig. 1(a),κ(T ) is usually measured by a
one-dimensional (1D) steady-state heat flow method using a
long rectangular-shaped sample, which is based on the rela-
tion κ = (Q/�T )(L/S),2) where Q is the applied heat power,
S the cross section of a sample, and�T andL the temperature
difference and distance between thermometers, respectively.
For anisotropic materials, anisotropicκ values (e.g. κx , κy ,
κz) are measured in separate experimental setups using long
rectangular-shaped samples cut along each direction. In lay-
ered compounds, for example, only a plate-like single crystal
can be obtained and it is often difficult to prepare long sam-
ples to realize a homogeneous 1D heat flow for perpendicular
conductivity (κ⊥) measurement. Figure 1(b) shows a conven-
tional experimental setup forκ⊥ measurement perpendicular
to the sample face of a plate-like material.3) A sapphire plate
with a higher thermal conductivity is attached to the sample
face and a heater is adhered to the sapphire plate. Because of
the short distanceL of the sample, the thermocouples cannot
be attached directly to the sample and temperatures have to
be measured on both the sapphire plate and the cold finger.
In this case, which is referred to as a thermally two-terminal
method, the contact thermal resistivityWc between the sam-
ple and the sapphire (the cold finger) significantly influences
the�T measurement. Furthermore, the wide contact area be-
tween the sapphire plate (or the cold finger) and the sample
may prevent homogeneous 1D heat flow because of the inho-
mogeneity ofWc in the contact area. Therefore, it is desirable
to measureκ⊥(T ) without the influence ofWc.

In this paper, we propose a new method to enable simulta-
neous determination of the anisotropic thermal conductivities
(κx , κy) in samples having two-dimensional (2D) anisotropy

using an identical experimental setup which is free from the
influence ofWc. This method has been applied to a carbon-
fiber-reinforced plastic (CFRP) from 40 K to 200 K and was
verified to obtainκx andκy with high precision.

2. Experimental Procedure
Figure 2 shows a schematic view of the experimental setup

around the sample. A rectangular sample with uniaxial
anisotropy is situated parallel to thex- andy-axes. The sam-
ple is thermally connected to a heater and a cold finger and

Fig. 1. (a) Conventional experimental setup forκ(T ) measurement by a
steady-state heat flow method using a long sample. (b) Conventional ex-
perimental setup for the perpendicular conductivity (κ⊥) measurement. A
sapphire plate is attached to the sample face and a heater is adhered to the
sapphire plate.
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Fig. 2. Schematic diagram of the new experimental setup around the sam-
ple in this study.

heat power Q is applied diagonally through the sample. In this
situation, temperatures at three measuring points, P1, P2 and
P3, increase due to heat flow, and the temperature rise (�T1,
�T2, �T3) at each point is determined by thermal conductivi-
ties (κx , κy) along thex- andy-directions and the applied heat
power Q. The temperature differences,�Tx = �T1 − �T2

and�Ty = �T1 − �T3, also change depending on the mag-
nitudes ofκx , κy and Q. The measured temperature differ-
ences (�Tx and�Ty) after the application of heat power are
compared with calculated ones (�T ′

x and�T ′
y) obtained by

solving a two-dimensional heat diffusion equation including
different pairs of anisotropic thermal conductivities (κ ′

x and

κ ′
y). This procedure is continued until�Tx = �T ′

x and
�Ty = �T ′

y are achieved at each measuring temperature and
the thermal conductivities along the two directions,κx(T ) and
κy(T ), can be determined.

Table I shows sizes and lengths in the experimental setup
shown in Fig. 2. The measured sample was a CFRP with
a fiber volume fraction ofVf = 0.6. The high-κ carbon
fiber was aligned along they-direction. The sample size
was 5.7 × 5.5 × 30 mm3 in the x-, z- and y-directions.
A Gifford-McMahon (GM) cycle helium refrigerator was
used as a cryostat and a copper cold finger was attached
to the cold head of the GM refrigerator.4) The sample
was adhered to both a metal film resistance heater (1 k�;
2.0 × 5.5 × 2.5 mm3) and the copper cold finger using Ag
paste. AuFe(0.07 at.%)-chromel thermocouples with a 76µm
φ were used to measure temperatures at the three positions
(P1, P2 and P3). The detection limit of the temperature differ-
ence�T was≈0.005 K. The measurement was performed
from 40 to 200 K. The sample was enclosed by a radia-
tion shield of Ni-plated copper which was thermally anchored
to the cold head. The sample chamber was evacuated to
<1× 10−5 Torr by an oil diffusion pump to prevent heat con-
vection and conduction by remanent gas. After heat power Q
was applied to the CFRP sample and a steady heat-flow state
was realized, the temperature differences�Tx and�Ty were
measured.
3. Numerical Solution of 2D Heat Diffusion Equation

In the case that heat power Q is applied diagonally to a
uniaxially anisotropic material using the experimental setup
shown in Fig. 2, the time dependence of the temperature vari-
ation at a certain positionT (x, y, t) can be given by solving
the following 2D heat diffusion equation,5)

∂T

∂t
= αx

∂2T

∂x2
+ αy

∂2T

∂y2
= κx

dC

∂2T

∂x2
+ κy

dC

∂2T

∂y2
, (1)

whereαx andαy (cm2/s) are the thermal diffusivities along thex- andy-directions, respectively,d (g/cm3) is the mass density
andC (J/cm3K) is the specific heat per volume of the sample. The sample lengthsLX and LY and timet are divided into
equal intervals�x , �y and�t , respectively, so that thex-y-t space is covered by a grid of rectangles. Equation (1) can be
represented by the following finite-difference solution using an explicit method,

T (i, j, t + �t) − T (i, j, t)

�t
= κx

dC

T (i + 1, j, t) − 2T (i, j, t) + T (i − 1, j, t)

�x2

+ κy

dC

T (i, j + 1, t) − 2T (i, j, t) + T (i, j − 1, t)

�y2
, (2)

whereT (i, j, t) is a temperature at a grid point (i, j) at timet with i and j being integers, andT (i, j, t + �t) is a temperature
at the point (i, j) after a time interval�t . It is to be noted that the spacial coordinates of the grid point (i, j) arex = i × �x
andy = j × �y, respectively. We can rearrange eq. (2) as follows:

T (i, j, t + �t) = T (i, j, t) + κx

dC

�t

�x2
{T (i + 1, j, t) − 2T (i, j, t) + T (i − 1, j, t)}

+ κy

dC

�t

�y2
{T (i, j + 1, t) − 2T (i, j, t) + T (i, j − 1, t)}. (3)

Thus, the unknown temperatureT (i, j, t + �t) at the point
(i, j) after the time interval�t can be represented in terms
of the five known temperatures,T (i + 1, j, t), T (i, j, t),
T (i − 1, j, t), T (i, j + 1, t) andT (i, j − 1, t). In order to il-
luminate the principle and procedure of the proposed method,
we present typical results of numerical solutions of eq. (3).

The temperature rise at a given pointi , �Ti , was normal-
ized by the maximum temperature difference in the sample,
TH − TC, whereTH is the temperature at the sample surface
area where the heater is attached andTC is the temperature at
the sample surface area where the cold finger is attached. This
normalized temperature rise was then denoted�T ′′

i . Accord-
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Table I. Meanings of symbols and lengths in experimental setup shown in Fig. 2.

Symbol Length (mm) Remarks

LY 30.0 length of the sample along they-direction

LX 5.7 distance between P1 and P2

(length of the sample along thex-direction)

T 5.5 length of the sample along thez-direction

LLY 12.8 distance between P1 and P3

LCY 6.4 contact length with cold finger (y-direction)

LHY 2.5 contact length with heater (y-direction)

YY 20.1 distance between P1 and the upper surface of cold finger

Fig. 3. Calculated isothermal lines (every�T ′′ = 0.1) in the sample for (a)
A(= κy/κx ) = 1, (b) A = 3, (c) A = 5 and (d)A = 10. Sample size and
the lengths in the experimental setup are set as shown in Table I. Temper-
ature difference�T ′′ is reduced by the maximum temperature difference
�Tmax (=TH − TC) between the temperatures of the sample surfaces at the
heater (TH) and at the cold finger (TC) (see text).

ingly, the normalized temperature difference between each
point of the sample was denoted by�T ′′

x = �T ′′
1 − �T ′′

2
and�T ′′

y = �T ′′
1 −�T ′′

3 . A constant heat flow condition was
applied to the surface area where the heater is attached and
a constant temperature condition was applied to the surface
area where the cold finger is attached. An adiabatic condi-
tion (∂T/∂x = 0 or ∂T/∂y = 0) was applied to the other
surface areas. The temperature differences�T ′′

x and �T ′′
y

in the steady heat flow state were calculated confirming the
steady values of the calculated temperatures after a sufficient
time lapse. The contact thermal resistivitiesWc between the
sample and the heater and between the sample and the cold
finger do not affect�T ′′

x and�T ′′
y in the steady state. In the

present calculation,�x , �y and�t were set to be 0.025 mm,
0.04 mm and 0.005 s, respectively.

Figure 3 depicts some examples of calculated isothermal
lines. The sample sizes and lengths are summarized in
Table I. The given dimensions correspond to the experimental
setup in the following section. The isotherm lines are drawn
at intervals of�T ′′ = 0.1. The thermal conductivity ratio
A = κy/κx was changed fromA = 1 in Fig. 3(a) toA = 10
in Fig. 3(d). These figures suggest that the measuring posi-
tion P1 should be located as close to the heater as possible
because the temperature difference between P1 and P2 is then
very sensitive to the thermal conductivity ratioA.

Figure 4 shows the calculated reduced temperature differ-

Fig. 4. Calculated normalized temperature differences�T ′′
x (between P1

and P2) and �T ′′
y (between P1 and P3) as a function of the anisotropic

thermal conductivity ratioA. �T ′′
x and�T ′′

y are normalized by�Tmax.

ences�T ′′
x and�T ′′

y as a function of anisotropy ratioA. It can
be confirmed that the temperature difference�T ′′

x increases
with increasing the anisotropy ratioA. On the other hand,
�T ′′

y decreases with increasingA. In actual experiments, the
temperature differences�Tx and�Ty measured at each mea-
suring temperature are determined by the heat power Q and
the thermal conductivitiesκx andκy along thex- andy-axes,
respectively. We uniquely determine theκx andκy values by
comparing the measured�Tx and�Ty with �T ′

x and�T ′
y

(not reduced) which were numerically calculated on the ba-
sis of eq. (3). A conceptional view of the present method is
presented in the following figure.

Figures 5(a) and 5(b) present the calculated curves of�T ′
x

and �T ′
y as a function of the thermal conductivityκy for

several fixedκx values under a constant applied heat power
Q. We discuss the estimation method only in theκy > κx

(A > 1) region. The temperature difference�T ′
x increases

with increasingκy for a fixed κx value but decreases with
increasingκx for a fixedκy value. Conversely,�T ′

y values
decrease with increasingκy for a fixedκx value and also de-
crease with increasingκx for a fixedκy value. In Fig. 5(a),
a set of points at which a calculated�T ′

x value is equal to
a measured�Tx value forms a curve parallel to theκx -κy

plane. A similar curve can be also obtained for�T ′
y = �Ty in

Fig. 5(b). Figure 5(c) schematically shows the projections of
both sets of points to theκx -κy plane. The cross-point of the
two projection curves can thus be uniquely obtained and the
anisotropic thermal conductivities (κx , κy) can be determined.
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Fig. 5. Conceptional view for determination of the anisotropic thermal
conductivitiesκx , κy . The calculated temperature differences�T ′

x and
�T ′

y are given for several pairs of the thermal conductivitiesκx , κy under
a constant applied heat power Q. In (a) and (b), the projections of a set
of points to theκx -κy plane are drawn schematically where�T ′

x = �Tx

and�T ′
y = �Ty are achieved. In (c), a cross-point of the two projection

curves can be uniquely obtained and the anisotropic thermal conductivities
(κx , κy ) can be decided.

4. Experimental Results and Summary
Figure 6 shows the temperature dependence of the mea-

sured values of�Tx /Q and�Ty /Q for the CFRP sample un-
der the experimental setup shown in Fig. 2. The�Tx /Q and
�Ty /Q (K/mW) values are the temperature differences along
thex- andy-directions normalized by the applied heat power
Q. The value�Ty /Q is larger than�Tx /Q over the entire
temperature region and increases with decreasing tempera-
ture. The�Tx /Q values slightly increase as temperature de-
creases to 50 K and then sharply decrease with further de-
crease of temperature. In the present experiment, no�Tx /Q
values could be obtained atT < 40 K because the�Tx values
became very small, which are beneath the detection limit of
our system. These results indicate that bothκx andκy values
decrease and that anisotropic ratioA = κy/κx also decreases

Fig. 6. Temperature dependence of measured�Tx /Q and�Ty /Q values
for the CFRP sample under the experimental setup shown in Fig. 2.

Fig. 7. Thermal conductivitiesκx (T ), κy(T ) of the CFRP sample as a
function ofT determined by the present technique. Dashed lines show the
thermal conductivitiesκx0(T ), κy0(T ) which were measured separately
by a 1D steady-state heat flow method using slender rectangular-shaped
CFRP samples for each direction.

with decreasing temperature, as inferred from Fig. 4.
Figure 7 shows the temperature dependence of the thermal

conductivitiesκx(T ), κy(T ) of the CFRP sample determined
by the technique used in this study. In this figure, dashed lines
show the thermal conductivitiesκx0(T ), κy0(T ) which were
measured by the 1D steady-state heat flow method using two
slender rectangular-shaped CFRP samples cut from the same
bulk sample for each direction. Theκx(T ) and κy(T ) val-
ues obtained by the present technique are in good agreement
with the values measured by the 1D heat flow method. Thus
the anisotropic thermal conductivitiesκx(T ) andκy(T ) can be
determined simultaneously and uniquely using a single exper-
imental setup. It is again to be noted that in the present tech-
nique, the contact thermal resistivityWc between the sample
and the heater (or the cold finger) does not influence the de-
termination ofκx(T ) andκy(T ) because the temperatures at
P1, P2 and P3 are directly measured on the sample surface and
thus the temperatures at the heater and the cold finger do not
appear in the analyses of the heat flow.

In summary, we proposed a new technique for simultane-
ous determination of the anisotropic thermal conductivities
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(κx , κy) for materials with uniaxial anisotropy using a single
experimental setup. This technique can be applied to mate-
rials with a wide range of anisotropic thermal conductivity
ratios A = κy/κx and the various ratios of sample length
L y/Lx . The validity and usefulness of this method were
verified using a carbon-fiber-reinforced plastic (CFRP) in the
temperature range from 40 K to 200 K.
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