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Abstract

The characteristic enhancement below T
#
in the thermal conductivity i of high-T

#
oxides, YBa

2
Cu

3
O

6.92
(90 K phase)

and YBa
2
Cu

3
O

6.7
(60 K phase), is promptly quenched by a small amount of 3d-transition metal (Fe, Co, Ni) substitution

for Cu. The quench of the i enhancement can be understood as being due to the enhanced phonon scattering below T
#
by

residual unpaired electrons. The existence of a considerable amount of the residual electrons is consistent with the d-wave
symmetry of the superconducting energy gap under strong electron scattering. ( 1999 Elsevier Science B.V. All rights
reserved.
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The thermal conductivity i of high-T
#

cuprates
(HTSC) has been widely investigated because i can
be measured below the superconducting transition
temperature T

#
and can provide important in-

formation concerning the superconductivity of
HTSC. YBa

2
Cu

3
O

7~d is one of the representative
HTSC systems and show two typical transition
temperatures at T

#
+90 K (90 K-YBCO: d+0.08)

and T
#
+60 K (60 K-YBCO: d+0.3) depending on

the oxygen deficiency d. T
#

of conventional super-
conductors is drastically reduced by addition of
magnetic impurities. In this paper, the effect of
3d-transition metal impurities M (M"Fe, Co, Ni)
substituted for Cu is investigated for both 90 K-
and 60 K-YBCO and is compared with that of
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non-magnetic Zn substitution. The main interest is
placed on the impurity effect on the thermal trans-
port in the YBCO system.

YBa
2
(Cu

1~x
M

x
)
3
O

7~d polycrystals were pre-
pared by a standard solid state reaction method.
The raw materials were powders of Y

2
O

3
, BaCO

3
,

CuO and transition metal oxides (NiO, CoO or
Fe

2
O

3
). They were calcined at 910°C for 24 h in air,

pulverized, pressed into pellets, sintered at 955°C
for 30 h in flowing oxygen and then slowly cooled
to the room temperature in about 24 h. Thus pre-
pared samples correspond to the 90 K-YBCO(M

x
)

samples. The 60 K-YBCO(M
x
) samples were ob-

tained by quenching 90 K-YBCO(M
x
) into liquid

nitrogen from 600°C. The oxygen deficiency d of
60 K-YBCO was estimated to be &0.3 from the
c-axis lattice parameter and from relative weight
loss after quenching process. The thermal conduct-
ivity was measured by a standard continuous heat
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Fig. 1. T
#

as a function of impurity concentration x for (a)
90 K-YBCO(M

x
) and for (b) 60 K-YBCO(M

x
).

Fig. 2. Magnetic susceptibility as a function of temperature for
(a) 90 K-YBCO(M

0.04
) and for (b) 60 K-YBCO(M

0.04
).

flow method [1]. The magnetic susceptibility s was
measured by a commercial SQUID magnetometer.

Fig. 1a and b show the superconducting transition
temperature T

#
as a function of Fe, Co, Ni and Zn

impurity concentration x for 90 K-YBCO(M
x
) and

60 K-YBCO(M
x
), respectively. In Fig. 1a and b, we

notice that the T
#
depression for increasing x is the

most steep for the nonmagnetic Zn impurities and
is the most gradual for Fe impurities. Fig. 2a and
b show the temperature dependence of the mag-
netic susceptibility s of 90 K-YBCO(M

0.04
) and

60 K-YBCO(M
0.04

). In Fig. 2a and b, Fe impurities

Fig. 3. (a) The thermal conductivity i of 90 K-YBCO(M
0.02

)
and (b) i of 60 K-YBCO(M

0.02
).

are the most magnetic followed by Co and Ni in
this order. In contrast, T

#
depression is stronger in

rather the reverse order, i.e., the more weakly mag-
netic ions damages the superconductivity more
seriously. The results in Figs. 1 and 2 seem to indicate
that the magnetic scattering for conduction electrons
[2] is not the main origin of the T

#
depression in both

90 K-YBCO(M
x
) and 60 K-YBCO(M

x
).

Fig. 3a and b show the temperature dependence
of the thermal conductivity i of 90 K-YBCO(M

0.02
)

and 60 K-YBCO(M
0.02

). i of 90 K- and 60 K-
YBCO [3] is also presented for comparison. The
thermal conductivities of both 90 K-YBCO and
60 K-YBCO show the characteristic enhancement
below T

#
, taking the maximum around T

.!9
&T

#
/2.

In the present YBCO polycrystals, the upper limit
of the electron thermal conductivity i

%
is under

strong ceiling by relatively large electrical resistiv-
ity and i

%
is estimated to hardly contribute to the

i enhancement [4,5]. Then similarly to conven-
tional alloy superconductors [6], the i enhance-
ment is considered to come from the reduced
phonon scattering into the Cooper pairs. We ana-
lyze the phonon thermal conductivity on the basis
of the following formula [7]:
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Table 1
Summary of the parameters used and determined in the fitting processes in pure 90 K-YBCO and 90 K-YBCO(M

0.02
) (M"Fe, Co, Ni,

Zn) samples

Sample T
#
(K) q~1

"
(s~1) s(K~2s~1) p(K~4s~1) E (K~1s~1) E@ (K~1s~1) U(K~3s~1)

YBCO 91 4.6]108 3.1]106 2.7]102 1.0]109 0 4.3]103

M"Fe 88 7.8]108 4.0]106 2.6]103 6.6]108 1.8]108 6.5]102

M"Co 77 4.5]108 3.8]105 3.3]103 5.2]108 3.5]108 3.2]103

M"Ni 79 4.2]108 3.3]105 1.5]103 1.4]108 4.7]108 2.9]103

M"Zn 55 2.9]108 4.8]105 5.2]103 5.3]107 1.1]108 3.2]102

where x is the reduced phonon frequency, n
0
("13!

d) the number of atoms composing YBa
2
Cu

3
O

7~d,
R the gas constant, d the mass density and M the
molar weight. The total phonon scattering rate
1/q

1)
is assumed to be given by the sum of scatter-

ing rates by various centers [7],

q~1
1)

"q~1
"

#s¹2x2#p¹4x4#E¹xg(x, y)

#E@¹x#º¹3x2 expA!
H

D
b¹B. (2)

Here, parameters q~1
"

, s, p, Eg(x, y), E and U repres-
ent the phonon scattering strength due to grain
boundaries, sheet-like faults, point defects, elec-
trons, residual normal electrons and other phonons
(umklapp process). The ratio of the phonon scatter-
ing by electrons g(x, y)"q%

1)/
/q%

1)4
in the normal

state to in the superconducting state was first given
by BRT [8,9]. We assumed the d-wave supercon-
ducting energy gap, D"D

0
cos 2/ [10]. The elec-

tron thermal conductivities i
%
was subtracted from

observed i by use of the Wiedemann—Franz law for
¹'¹

#
and by use of Kadanoff’s formula for

¹(¹
#

[11]. i
%

is always much smaller than i
1)

.
Examples of the fitting curves for i

1)
are shown in

Fig. 4 for 90 K-YBCO(M
0.02

). Table 1 summarizes
the used fitting parameters. The most impressive
result is the absence of the i enhancement below
T
#

caused by the impurities. As can be seen from
parameter values in Table 1, we attributed the
disappearance of the enhancement to the phonon
scattering by residual electrons (E@ term) which do
not condense into Cooper pairs even at 0 K.
Miyake calculated ¹

#
/¹

#0
versus N

3%4
/N

0
relation

(T
#
/T

#0
is the transition temperature in the presence

of impurity scattering normalized by the pure

Fig. 4. Examples of the fitting curves based on the Eqs. (1) and (2)
for 90 K-YBCO(M

0.02
).

sample transition temperature T
#0

and N
3%4

/N
0

is the
fraction of the residual electron density at 0 K) [12].
The calculation pointed out very large N

3%4
/N

0
in

the case of the d-wave energy gap and in the limit of
strong (unitarity limit) electron scattering by impu-
rities. The results of our analyses of i

1)
are semi-

quantitatively consistent with the theoretical pre-
diction of Miyake in the case of strong scattering.
As for Zn impurities, however, a considerable re-
duction of the phonon—electron scattering must be
postulated to explain the stronger reduction effect
of Zn for the thermal conduction in the YBCO
system.
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