

Physica C 263 (1996) 305-308

PHYSICA G

Influence of Cu site impurities on the thermal conductivity of $YBa_2Cu_3O_{7-\delta}$

H. Fujishiro *, M. Ikebe, K. Nakasato, K. Noto

Department of Materials Science and Technology, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020, Japan

Abstract

The effect of Zn substitution at in-plane Cu sites in 90 K and 60 K phase $YBa_2(Cu_{1-x}Zn_x)_3O_{7-\delta}$ sintered materials (0 < x < 0.04) was investigated from the viewpoint of thermal conduction. The characteristic enhancement of the thermal conductivity κ just below T_c in pure YBCO was rapidly suppressed in both phases by the Zn substitution. Based on the phonon heat conduction model, the disappearance of the κ enhancement is attributed to the depressed phonon-electron scattering caused by the Zn substitution.

1. Introduction

In the YBa₂Cu₃O_{7- δ} (YBCO) system, two stable superconducting phases are known to exist, the 90 K and the 60 K phase. Impurity Zn atom substitution at Cu sites increases the electrical resistivity ρ in the normal state and results in the reduction of the transition temperature, T_c . The rapid reduction of T_c has been attributed to a localization of Cu²⁺ d-holes. [1] The thermal conductivity κ is a valuable probe for the scattering processes of phonons in both normal and superconducting states. A characteristic feature of thermal conductivity $\kappa(T)$ in YBCO is a rapid rise just below T_c and the existence of a maximum at about $T_c/2$ [2]. In this report, we investigate the effect of Zn impurity on the thermal conductivity $\kappa(T)$ for both the 90 K and 60 K phase

* Corresponding author. Fax: +81 196 21 6373; e-mail: fujishiro@msv.cc.iwate-u.ac.jp. YBCO samples. The experimental results are systematically analyzed on the basis of the phonon heat conduction model.

2. Experimental procedure

90 K phase YBa₂(Cu_{1-x}Zn_x)₃O_{7- δ} (0 < x < 0.04) samples were prepared from stoichiometric mixtures of Y₂O₃, BaCO₃, CuO and ZnO raw powders. The mixtures were calcined at 910°C for 24 h in air. They were pulverized, pressed into pellets and then sintered at 955°C for 30 h in flowing oxygen. 60 K phase samples were fabricated by a quenching process from 600°C down to liquid nitrogen temperature. The oxygen deficiency δ of the 90 K phase and 60 K phase samples was estimated to be $\delta \approx 0.1$ and ≈ 0.3 , respectively [3]. The density of these samples was about 90% and independent of the oxygen deficiency and the Zn concentration. The thermal conductivity measurement was made by a continuous

^{0921-4534/96/\$15.00 © 1996} Elsevier Science B.V. All rights reserved SSDI 0921-4534(95)00757-1

heat flow method between 10 and 150 K using an automated measuring apparatus with Au(0.07 at.%Fe)-chromel thermocouples as thermometers [4].

3. Experimental results

Fig. 1 shows the temperature dependence of the electrical resistivity ρ of 90 K and 60 K phase $YBa_2(Cu_{1-x}Zn_x)_3O_{7-\delta}$ samples. The metallic behavior of $\rho(T)$ was preserved for all 90 K phase samples, though ρ increased with increasing Zn concentration x. $\rho(T)$ of the 60 K phase samples showed a bump just above T_c and the height of the bump increased with increasing x. The inset in Fig. 1 shows the Zn concentration dependence of T_c of these samples. T_c decreased linearly with increasing Zn concentration x and the T_c depression rate for x $(\Delta T_c/\Delta x)$ was almost the same for 90 K and 60 K phase samples.

Fig. 2 shows the thermal conductivity κ as a function of temperature T for the 90 K and 60 K phase YBa₂(Cu_{1-x}Zn_x)₃O_{7- δ} samples. For 90 K phase samples, the characteristic enhancement was suppressed quite rapidly by the Zn substitution. The enhancement was barely discernible even for the specimen with x = 0.005, which showed a sharp superconducting transition at $T_c = 85$ K. The $\kappa(T)$

Fig. 1. The temperature dependence of the electrical resistivity ρ of the 90 K and 60 K phase YBa₂(Cu_{1-x}Zn_x)₃O_{7-\delta} sintered samples. The inset shows the Zn concentration dependence of T_c of these samples.

Fig. 2. The temperature dependence of the thermal conductivity κ of the 90 K phase and 60 K phase YBa₂(Cu_{1-x}Zn_x)₃O_{7- δ} samples with various Zn concentrations.

values decreased with increasing x in the normal state. The κ enhancement was also observed in the 60 K phase YBCO below T_c (= 58 K) but it was less obvious than that of the 90 K phase YBCO. The κ enhancement of the 60 K phase YBa₂Cu₃O_{7- δ} is, however, far clearer than that of the 90 K phase YBa₂(Cu_{0.98}Zn_{0.02})₃O_{7- δ}, in spite of almost the same T_c values of both samples. In the 60 K phase the enhancement was completely suppressed by the Zn substitution, even for the specimen with x = 0.005 ($T_c = 40$ K).

4. Discussion

h

The heat transport in conductors is due to both electrons (κ_e) and phonons (κ_{ph}). In the normal state the electron contribution κ_{en} can be estimated by using the Wiedemann-Franz law. In the superconducting state, we assume that κ_{es} follows the theory proposed by Kadanoff and Martin [5], which predicts the reduction of κ_e below T_c because of the formation of Cooper pairs. Taking account of the phonon scattering by various crystal defects and electrons, the phonon contribution is given by Tewordt and Wölkhausen [6] in the following way:

$$\kappa_{\rm ph} = \frac{3 \, dn R T^3 v^2}{M \Theta_{\rm D}^3} \int_0^{\Theta_{\rm D}/T} \frac{x^4 e^x}{\left(e^x - 1\right)^2} \, \tau_{\rm ph} \, \mathrm{d}x, \qquad (1)$$

Fig. 3. The fitting of $\kappa_{\rm ph}$ by the TW-BRT theory for the 90 K phase samples with various Zn concentrations. The solid lines are the calculated curves using parameter values in Table 1 ($\chi = \Delta(0)k/\Delta(0)_{\rm BCS} = 1$). The dotted line for the x = 0.005 sample presents the fitting in which $\chi = 0.6$ is used as the reduced gap.

where d is the mass density, M the mass of 1 mole, n(=13) the number of atoms composing YBCO compounds, R the gas constant, Θ_D the Debye temperature, v the average phonon velocity and x the reduced phonon frequency. The phonon relaxation time $\tau_{\rm ph}$ is given by

$$\frac{1}{\tau_{\rm ph}} = \tau_{\rm b}^{-1} + sT^2x^2 + pT^4x^4 + ETxg(x, y).$$
(2)

Here, τ_b is the phonon relaxation time due to grain boundaries and s, p and E refer to the strength of the phonon scattering by sheet-like faults, point defects and electrons, respectively. The function $g(x, y) = \tau_{phn}/\tau_{phs}$ stands for the ratio of the phonon-electron relaxation time in the normal and superconducting states, which depends on the energy gap through the parameter $y = \Delta(T)/k_{\rm B}T$ as given by Bardeen, Rickayzen and Tewordt [7].

Fig. 3 shows fitting curves of the phonon thermal conductivity $\kappa_{ph}(=\kappa-\kappa_e)$ for the 90 K phase samples. The parameters used and determined in the fitting process are summarized in Table 1. As can be seen, the theoretical curves reproduced the measured $\kappa_{\rm ph}(T)$ quite satisfactorily. The electron-phonon coupling parameter $\lambda (=2a\langle t \rangle E/\pi v)$, where a and $\langle t \rangle$ are the lattice spacing and the effective hopping matrix element of electrons, respectively [6]) suddenly decreases by addition of Zn impurity. The strength of the phonon scattering by point defects, p, increases with increasing x because of the alloying effects, but the increase is somewhat moderate. The rapid suppression of the $\kappa(T)$ peak for Zn substitution might also be explained by a suppression of the superconducting gap, $\chi = \Delta(0) / \Delta(0)_{BCS}$, because then the phonon scattering by electrons survives at lower temperatures [8]. An example of the fitting for a reduced energy gap ($\chi = 0.6$) is shown in Fig. 3 for the 90 K phase sample with x = 0.005. However, the fitting curve did not reproduce the measured $\kappa_{\rm ph}(T)$ in the low-temperature region. Thus, the disappearance of the κ enhancement is mainly attributed to the depressed phonon-electron coupling strength λ . As can be seen in Fig. 1, ρ increases by addition of Zn. As Pippard pointed out [9], the electron-phonon interaction is diminished by shorter

Table 1

Characteristic parameters of the 90 K phase and 60 K phase $YBa_2(Cu_{1-X}Zn_X)_3O_{7-\delta}$

Sample	90 K phase $x = 0$	90 K phase $x = 0.005$			90 K phase $x = 0.02$	$\begin{array}{l} 60 \text{ K phase} \\ x = 0 \end{array}$
x	1	l	<u> </u>	0.6	1	1
<i>T</i> _c (K)	91		85		57	58
$\Theta_{\rm D}$ (K)	430		430		430	380
$d(g/cm^3)$	5.68		5.47		5.73	5.53
$\tau_{h}^{-1}(s^{-1})$	3.0×10^{8}	3.1×10^{8}		2.9×10^{8}	3.2×10^{8}	3.2×10^{8}
$p(K^{-4} s^{-1})$	456	1507		439	4497	1402
$s(K^{-2}s^{-1})$	2.7×10^{6}	2.7×10^{6}		2.8×10^{6}	2.9×10^{6}	4.5×10^{6}
$E(K^{-1}s^{-1})$	6.9×10^{8}	1.3×10^{8}		7.1×10^{8}	2.9×10^{7}	3.3×10^{8}
λ	0.26	0.05		0.27	0.01	0.13

electron mean free paths. The rapid depression of λ might be related to the d-hole localization caused by Zn impurities [1].

The electron-phonon coupling parameter λ of the 60 K phase YBa₂Cu₃O_{7- δ} sample is larger than that of the 90 K phase YBa₂(Cu_{0.98}Zn_{0.02})₃O_{7- δ} sample with almost the same T_c (see Table 1). This indicates that the small amount of Zn substitution at in-plane Cu sites more directly and seriously suppresses the superconductivity than the oxygen reduction from the CuO chains, making the anomaly of the phonon thermal transport below T_c disappear.

A central point in the recent dispute on the enhancement of $\kappa(T)$ is concerned with its origin; phonons or electrical carriers. In this paper, we consistently assumed the phonon origin model, and the disappearance of the κ peak caused by the Zn substitution was attributed to the depression of electron-phonon interaction. If the electrical carrier is responsible for the κ enhancement, a very small amount of Zn impurity should dramatically enhance the quasi-particle scattering rate below T_c . Experi-

ments to determine the quasi-particle scattering rate in a Zn-doped crystal are highly desirable.

References

- C.S. Jee, D. Nichols, A. Kebede, S. Rahman, J.E. Crow, A.M. Ponte Goncalves, T. Mihalisin, G.H. Myer, I. Perez, R.E. Salomon, P. Schlottmann, S.H. Bloom, M.V. Kuric, Y.S. Yao and R.P. Guertin, J. Supercond. 1 (1988) 63.
- [2] C. Uher and A.B. Kaiser, Phys. Rev. B 36 (1987) 7135.
- [3] K.W. Kwok, G.W. Crabtree, A. Umezawa, B.W. Veal, J.D. Jorgensen, S.K. Malik, L.J. Nowicki, A.P. Paulikas and L. Nunez, Phys. Rev. B 37 (1988) 106.
- [4] M. Ikebe, H. Fujishiro, T. Naito and K. Noto, J. Phys. Soc. Jpn. 63 (1994) 3107.
- [5] L.P. Kadanoff and P.C. Martin, Phys. Rev. 124 (1962) 670.
- [6] L. Tewordt and T. Wölkhausen, Solid State Commun. 70 (1989) 839.
- [7] J. Bardeen, G. Rickayzen and L. Tewordt, Phys. Rev. 113 (1959) 982.
- [8] S.T. Ting, P. Pernambuco-Wise and J.E. Crow, Phys. Rev. B 50 (1994) 6375.
- [9] A.B. Pippard, J. Phys. Chem. Solids 3 (1957) 175.