Anisotropic Thermal Diffusivity and Conductivity of YBCO(123) and YBCO(211) Mixed Crystals. I

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1994 Jpn. J. Appl. Phys. 33 4965
(http://iopscience.iop.org/1347-4065/33/9R/4965)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 160.29.75.151
This content was downloaded on 06/06/2017 at 08:43

Please note that terms and conditions apply.

You may also be interested in:

Anisotropic Thermal Diffusivity and Conductivity of YBCO(123) and YBCO(211) Mixed Crystals. II
Manabu Ikebe, Hiroyuki Fujishiro, Tomoyuki Naito et al.

Observations of Structure, Phase and Composition on Unidirectional Solidified Y–Ba–Cu–O Samples
Jun-ichiro Kase, Jun-ichi Shimoyama, Eiji Yanagisawa et al.

Tunneling Measurements of Thin Film Y–Ba–Cu–O/Nb Junctions
Yujiro Katoh, Hidefumi Asano, Keiichi Tanabe et al.

Preparation of Y–Ba–Cu–O Films by dc Sputtering
Yukinori Saito, Kazuhiko Sakabe, Kazuhiro Ishihara et al.

Deterioration of Superconductive Character of Y–Ba–Cu Oxides in Time Duration
Hisayuki Matsui, Susumu Ito, Ippei Nakagawa et al.

Preparation of Superconducting Y–Ba–Cu–O and Bi–Pb–Sr–Ca–Cu–O Compounds by Chelating Method
Tadashi Fujisawa, Akira Takagi, Tetzuji Honjo et al.

Y–Ba–Cu–O Thin Films Formed on Alumina Ceramic Substrates Coated with Yttria Stabilized Zirconia Layer
Yoshiharu Onuma, Kiichi Kamimura, Masato Nakao et al.
Anisotropic Thermal Diffusivity and Conductivity of YBCO(123) and YBCO(211) Mixed Crystals. I

Hiroyuki Fujishiro, Manabu Ikebe, Tomoyuki Naito, Koshichi Noto, Shuichi Kohayashi, and Shuji Yoshizawa

Department of Materials Science and Technology, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020
Central Research Laboratory, Dowa Mining Co., Ltd., Tobukicho, Hachinohe, Aomori 038

(Received May 31, 1994; accepted for publication July 16, 1994)

The anisotropic thermal diffusivity α of the highly c-axis-oriented Y-Ba-Cu-O bulk superconducting crystals has been measured quasi-simultaneously with the thermal conductivity κ. The estimated values of the specific heat C by use of α and κ values parallel and perpendicular to the c-direction agreed with each other. In these crystals prepared by the modified melt texture growth (MMTG) method, fine Y_2BaCuO$_4$ particles are dispersed in the YBa$_2$Cu$_3$O$_{7-\delta}$ superconducting matrix phase. Based on a simple model, the thermal diffusivity and the specific heat of the YBa$_2$Cu$_3$O$_{7-\delta}$ matrix phase are separated using independently measured data of a Y_2BaCuO$_4$ polycrystal. The influence of Y_2BaCuO$_4$ particles on the thermal properties of the mixed crystals is discussed.

KEYWORDS: Y-Ba-Cu-O superconductor, thermal diffusivity, thermal conductivity, specific heat, mixed crystal

1. Introduction

Y-Ba-Cu-O oxide superconductors prepared by the melt growth method are expected to be applicable to practical use owing to their high critical current density (J_c) and large pinning force. In these crystals, fine Y_2BaCuO$_4$ (211) phase particles are dispersed in the YBa$_2$Cu$_3$O$_{7-\delta}$ (123) superconducting matrix phase and are considered to act as pinning centers. The modified melt texture growth (MMTG) method is one of the melt growth methods for Y-Ba-Cu-O crystals, and has some advantages over other methods. Firstly, since no crucibles are used for the growth, the fabrication procedure is very simple. Secondly, the grown crystals are comparatively free from impurities, because the maximum temperature of about 1100°C for the growth is lower than those of other melt growth methods, e.g., quench and melt growth (QMG) and melt texture growth (MTG). The J_c value of the present crystals was found to be larger than 10^4 A/cm2 at 77 K and zero field, which is comparable to those of the good crystals prepared by the QMG method.

We have already reported the thermal conductivity of the c-axis-oriented Y-Ba-Cu-O mixed crystals prepared by MMTG. The thermal conductivity was analyzed based on a proposed model for mixed crystals. As a result, the (211) phase particles decreased the conductivity of the mixed crystal in the ab-plane but only slightly influenced the conductivity along the c-axis.

Recently we developed a simultaneous measuring system for the thermal diffusivity α and the thermal conductivity κ with an identical experimental setup. This system employs a Gifford-McMahon (GM) cycle helium refrigerator as a cryostat and makes it possible to measure α and κ between 10 and 200 K. Using the measured α and κ, the specific heat C of the sample can be obtained from the relation $C = \kappa M/\rho a$, where ρ is the density and M is the molar weight of the sample, respectively. In this paper, we study the thermal diffusivity α and the thermal conductivity κ and estimate the specific heat C of Y-Ba-Cu-O crystals prepared by the MMTG method. α and κ have been measured both in the ab-plane and in the c-direction and the anisotropic nature of the thermal conduction is investigated. Based on the previously proposed model, we also discuss the influence of the (211) phase particles on α and C.

2. Experimental

2.1 Sample preparation

The nominal weight ratio of the (123) phase to the (211) phase of the measured Y-Ba-Cu-O samples was 1.0:0.4. Platinum (Pt) powder was added at an amount of 0.5 wt% in order to finely disperse the (211) particles. The detailed sample preparation procedure was described elsewhere. The sample used for the ab-plane measurement (Fig. 1) is 6.1 \times 5.9 \times 23.0 mm3 with the 6.1 \times 23.0 mm2 plane perpendicular to the c-axis. The sample for the c-direction measurement (Fig. 2) was 2.8 \times 3.9 \times 12.0 mm3 with the 12.0-mm length parallel to the c-axis. The crystal axes of the samples were determined by an X-ray diffraction method. The (211) polycrystals were prepared by a solid state reaction method. Mixed powder of Y_2O$_3$, BaCO$_3$ and CuO with a mole ratio of 1:1:1 was calcined at 950°C for 15 h in air. After pulverizing the calcined materials, they were pressed into a pellet and sintered at 990°C for 24 h in air.

2.2 Measurement

Figure 1 shows a schematic diagram of the experimental setup for the thermal diffusivity and conductivity measurement. The vacuum chamber was evacuated to below 10$^{-5}$ Torr by an oil diffusion pump. One end of the sample was soldered to the cold head of the GM refrigerator and a small metal film chip resistor was adhered to the other end of the sample as a heater by GE7031 varnish. Au(Fe)-chromel thermocouples (73 μm in diameter) were used differentially to monitor the temperatures T_1 and T_2 at the positions P$_1$ and P$_2$. Digital voltmeters (DVMs), current sources, a personal computer, and other equipment were connected using GP-IB and RS-232C interface bus lines. This automatic measuring system of α and κ was operated in the temperature range from 10 to 200 K. The thermal con-
Vacuum chamber

Fig. 1. Schematic diagram of the sample configuration of the thermal diffusivity and conductivity measurement system using a GM cycle helium refrigerator.

2.3 Determination of the thermal diffusivity α

When a heat pulse is applied from a heater to a long sample, the time variation of temperature $T(x, t)$ at a position x is described by the following one-dimensional diffusion equation,

$$\frac{\partial T(x, t)}{\partial t} = \alpha \frac{\partial^2 T(x, t)}{\partial x^2},$$

where α is the diffusivity. This equation can be numerically solved by the Crank-Nicolson implicit method11 by converting it into approximate difference equations. After introducing the boundary conditions, we obtain n-dimensional linear equations, which are solved by the Gaussian elimination method. In the measurement, the temperature changes $T_1(t)$ and $T_2(t)$ at the two measuring points P_1 and P_2 were recorded 3.1 times a second for 100–150 s. The temperature change $T_1(t)$ was used for the boundary condition of the diffusion equation in order to calculate the temperature change of $T_2(t)$ at the point of P_2 for an arbitrary α. This method has an advantage that $T_2(t)$ can be calculated precisely even if the shape of the heat impulse is disturbed when it passes through the sample surface. In order to determine the optimum α values systematically, the maximum values of the experimentally observed $T_2(t)$ curve and the calculated $T_2(t)$ one were reduced to 1 and eighty points in the range from 0.1 to 0.9 of the rising part of $T_2(t)$ were sampled to obtain the minimum squared time error $\langle \Delta t^2 \rangle$ between the observed and calculated curves. The method was confirmed to have $\pm 1.5\%$ precision and $\pm 5\%$ accuracy for various α values.7

3. Experimental Results

Figure 2 shows the temperature dependences of the ab-plane thermal conductivity κ_{ab} and the c-axis thermal conductivity κ_c. The transition temperature T_c of these two MMTG samples (#1, #2) was determined to be 90 K from the resistive measurements (see Fig. 1 in the following Paper II15). κ_{ab} increases slightly from 200 K to T_c with decreasing temperature, and shows a remarkable upturn below T_c. The maximum of κ_{ab} occurs at around 50 K and then κ_{ab} decreases with further decrease of temperature. κ_c is almost constant above about 100 K, increases slightly below about 100 K with decreasing temperature and then decreases sharply below ≈ 50 K. The observed anisotropy ratio κ_{ab}/κ_c is about 4.0 in the normal state.

Figure 3 shows the temperature dependences of the ab-plane thermal diffusivity α_{ab} and c-axis thermal diffusivity α_c. In the normal state, $\alpha_{ab}(T)$ and $\alpha_c(T)$ increase slightly with decreasing temperature. Below T_c, the gradient of $\alpha_{ab}(T)$ changes and increases more and more rapidly with decreasing temperature. For the c-axis thermal diffusivity, the gradient change of $\alpha_c(T)$ below T_c is hardly discernible. The diffusivity shows anisotropy similar to the thermal conductivity. The observed anisotropy ratio α_{ab}/α_c is also about 4.0 in the normal state. The observed characteristics of the in-plane thermal diffusivity are in accord with those

![Temperature dependence of the thermal conductivity of the MMTG samples in the ab-plane (κ_{ab}, sample #1) and along the c-axis (κ_c, sample #2).](image-url)
reported for the other oxide superconductors.13-16

Figure 4 shows the specific heat C (J/mol K) of these crystals calculated using the relation $C=\kappa M/\rho\alpha$. In Fig. 4, C_{ab} is the specific heat calculated using κ_{ab} and α_{ab}, and C_c is calculated using κ_c and α_c. In the calculation, the measured value of $\rho=5.94$ g/cm2 and average molar weight $M_{MMTG}=589.8$ g were used, because the present crystals are composed of the (123) phase ($M_{123}=666.0$ g) and the (211) phase ($M_{211}=458.6$ g) with the molar ratio of (123):(211)=(1.0/666.0):(0.4/458.6). C_{ab} and C_c are in good agreement over the entire temperature range below 200 K. This agreement supports the reliability of the present measurements of α and κ.

In order to investigate the influence of the (211) phase particles on the values of α, κ, and C of the MMTG sample, the thermal diffusivity α^{211} and conductivity κ^{211} of the (211) polycrystal were also measured and the specific heat C^{211} was estimated. Figure 5 shows the temperature dependences of α^{211} and κ^{211}. Since the (211) polycrystal is an insulator, the heat conduction is considered to be due to phonons. $\kappa^{211}(T)$ increases slightly with decreasing temperature, shows a maximum at about 50 K, and then decreases with further decrease of temperature. $\alpha^{211}(T)$ also increases with decreasing temperature and increases very rapidly below 40 K. Figure 6 shows the specific heat of the (211) phase C^{211}, calculated using the values of κ^{211}, α^{211}, $M_{211} (=458.6$ g) and $\rho_{211} (=3.1$ g/cm3 which was the measured value).

4. Discussion

4.1 Influence of the (211) phase particles on the specific heat

The specific heat of MMTG crystal C_{MMTG}, is represented using C^{123} and C^{211} as

$$C_{MMTG}=(1-X)C^{123}+XC^{211},$$

where $X=(0.4/458.6)/(1.0/666.0+0.4/458.6)=0.366$ is the molar ratio of the (211) phase in the present crystal. Using this relation and the measured C_{MMTG} and C^{211} values, the specific heat of the (123) matrix phase C^{123} was estimated. Figure 7 shows the estimated specific heat. In this figure, C^{123} and C^{211} are the specific heat calculated from the data of samples #1 and
Fig. 7. Temperature dependence of the specific heat of the (123) matrix phase in the MMTG mixed crystals. C_a^{123} and C_c^{123} show the specific heat calculated using the data in the ab-plane (sample #1) and along the c-axis (sample #2), respectively. Reported data are also shown.

#2, respectively. The specific heat data of the (123) phase reported by Leyarovski et al.17 and Gordon et al.18 are also shown. The reported data measured by an adiabatic calorimeter17 and a conventional heat pulse method18 are only slightly below C_{ab}^{123} and C_{c}^{123}.

4.2 Influence of the (211) phase particles on the thermal conductivity

In the MMTG crystals, a number of (211) phase fine particles are dispersed in the (123) matrix, as schematically shown in Fig. 8(a). In the previous study for the thermal conductivity of MMTG crystals,6 we proposed a simple model for the heat conduction of the mixed crystals. In this model, all the (211) particles in the cubic sample with a side length of a_0 are concentrated into a small cubic (211) polycrystal embedded into the (123) matrix phase, as shown in Fig. 8(b). Thus we approximate the contribution of the (211) particles to the heat path by the small polycrystal cube. Because the ideal densities of the (211) and (123) phases are almost the same, the weight ratio can be regarded as the volume ratio of the (211) and (123) phases. Therefore, if the (211) volume ratio is $x_0 = 0.286$, the side length of the (211) polycrystal cube is assumed to be $\sqrt[3]{x_0}a_0$. The thermal resistance W of the specimen is given by an equivalent circuit schematically shown in Fig. 8(c),

$$W = \frac{1}{a_0 \kappa} = \frac{W_{123}}{W_{123} + W_{211}} + \frac{W_{123}W_{211}}{W_{123} + W_{211}},$$

where $W_{123} = (1 - 3\sqrt{x_0}/(a_0 \kappa^{123}))$. $W_{123} = \sqrt{x_0}/[a_0(1 - \sqrt{x_0})\kappa^{123}]$ and $W_{211} = 1/[a_0\sqrt{x_0}\kappa^{211}]$. We can deduce the conductivity value κ^{123} of the (123) phase in the present mixed crystals using κ^{211} shown in Fig. 5.

Figure 9 shows the calculated κ_a^{123} and κ_c^{123} in which the measured κ_a and κ_c are also shown. For sample #1, the calculated ab-plane thermal conductivity κ_a^{123} is fairly large and the measured κ_a is appreciably reduced by the dispersed particles of the low thermally conductive (211) phase. On the other hand, the calculated c-axis conductivity κ_c^{123} for sample #2 is slightly smaller than the measured κ_c because of the somewhat higher thermal conductivity of the (211) phase in comparison with κ_c. Accordingly, the anisotropy ratio $\kappa_a^{123}/\kappa_c^{123}$ is estimated to be about 6.6 above T_c for the matrix (123) phase.

4.3 Estimation of α_a^{123} and α_c^{123}

In this subsection, we estimate the influence of the (211) phase particles on the thermal diffusivity. We can
obtain the ab-plane and c-axis thermal diffusivities of the (123) matrix phase using the relation $\alpha_{123} = \kappa_{123}/\nu_{123}C_{123}$. For the estimation using this relation, the specific heat shown in Fig. 7 was used for C_{123}, and the thermal conductivity of the (123) matrix phase κ_{123} in Fig. 9 was used for κ_{123}.

Figure 10 shows the temperature dependence of the ab-plane thermal diffusivity of the (123) matrix phase α_{ab}^{123}. In this figure, the measured thermal diffusivity α_{ab} and that of the (211) polycrystal α_{211} are also shown. The measured α_{ab} was about 40% smaller than α_{211}^{123} at 200 K because α_{211} is smaller than α_{ab}. Figure 11 shows the temperature dependence of c-axis thermal diffusivity of the (123) matrix phase α_{c}^{123}. In this figure, the measured thermal diffusivity α_{c} and that of the (211) phase α_{211}^{123} are also shown. Because of the higher thermal diffusivity of the (211) phase than that of α_{c}, the measured α_{c} was about 15% larger than α_{c}^{123} at 200 K. The existence of the (211) phase somewhat enhances the c-axis thermal diffusivity. The anisotropy ratio of the (123) matrix phase $\alpha_{ab}^{123}/\alpha_{c}^{123}$ was 6.7 at 200 K which was larger than the measured anisotropic ratio of the MMTG sample $\alpha_{ab}/\alpha_{c} (=4.0)$. In this way, it is shown that the (211) phase particles reduce the thermal diffusivity in the ab-plane but enhance the diffusivity along the c-axis in the MMTG crystals.

5. Conclusions

The anisotropic thermal diffusivity α of YBCO(123) and YBCO(211) mixed crystals prepared by the MMTG method was measured quasi-simultaneously with the thermal conductivity κ. The values of the estimated specific heat based on the data of the diffusivity and conductivity parallel and perpendicular to the crystalline c-axis agreed with each other. Based on a simple model, the diffusivity and conductivity of the (123) matrix phase were estimated using the data of the (211) polycrystal. The influence of the (211) particles on the thermal properties was discussed. As a result, it was found that the (211) phase reduces the thermal diffusivity and conductivity in the ab-plane, but some-

Fig. 9. The results of the model calculation for the ab-plane thermal conductivity κ_{ab}^{123} (○) and the c-axis conductivity κ_{c}^{123} (△) are shown together with the measured κ_{ab} (●) and κ_{c} (▲).

Fig. 10. Estimated ab-plane thermal diffusivity α_{ab}^{123} of the (123) matrix phase in the MMTG sample. Measured thermal diffusivity data of sample #1 α_{ab} and the (211) polycrystal α_{211}^{123} are also shown for comparison.

Fig. 11. Estimated c-axis thermal diffusivity α_{c}^{123} of the (123) matrix phase in the MMTG sample. Measured thermal diffusivity data of sample #2 α_{c} and the (211) polycrystal α_{211}^{123} are also shown for comparison.

Acknowledgments

The authors wish to thank Miss T. Nakagawa of Iwate University for her assistance in the thermal diffusivity and the specific heat analyses and Dr. M. Matsukawa of Iwate University for valuable discussion.