Thermoelectric properties of LiCo_{1-x} M_x O₂ (M = Cu, Mg, Ni, Zn): Comparison with Li_y CoO₂ and Na_y CoO₂ systems

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 Jpn. J. Appl. Phys. 56 021101

(http://iopscience.iop.org/1347-4065/56/2/021101)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 160.29.75.151 This content was downloaded on 05/01/2017 at 10:11

Please note that terms and conditions apply.

Thermoelectric properties of $LiCo_{1-x}M_xO_2$ (M = Cu, Mg, Ni, Zn): Comparison with Li_vCoO_2 and Na_vCoO_2 systems

Shu Mizuno¹, Hiroyuki Fujishiro^{1*}, Mamoru Ishizawa¹, Tomoyuki Naito¹, Hirokazu Katsui², and Takashi Goto²

¹Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan ²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

*E-mail: fujishiro@iwate-u.ac.jp

Received June 26, 2016; accepted October 24, 2016; published online January 5, 2017

Li_yCoO₂ has a similar layered structure to Na_yCoO₂, which is a typical p-type oxide thermoelectric material, and the average Co valence of 3 + y is controlled by the Li content *y*. We investigated the thermoelectric properties of LiCo_{1-x}M_xO₂ samples (M = Cu, Mg, Ni, Zn) for the first time at high temperatures, in which Co³⁺ was substituted by the divalent M²⁺ ions, and the average Co valence of 3 + x can be controlled similarly to the Li content *y* in Li_yCoO₂. The substitution of the M²⁺ ions for the Co site was found to show thermoelectric properties similar to those of Li_yCoO₂ with the same average Co valence. The Mg-doped sample showed the highest thermoelectric performance at high temperatures in this study; the thermoelectric power factor *P* is 2.38 x 10⁻⁴ W m⁻¹K⁻² at 1173 K and the dimensionless figure of merit *ZT* is 0.024 at 876 K. The thermoelectric potential of LiCo_{1-x}M_xO₂ is discussed and compared with those of Li_yCoO₂ and Na_yCO₂ systems. © 2017 The Japan Society of Applied Physics

1. Introduction

Thermoelectric technology that uses waste heat for power generating and cooling devices has been revived in anticipation of the forthcoming energy crisis, together with other renewable energy sources. The thermoelectric performance of materials can be evaluated from the dimensionless figure of merit ZT (= $S^2 T / \rho \kappa$), and the thermoelectric power factor P $(=S^2/\rho)$, where S is the Seebeck coefficient, T is the absolute temperature, ρ is the electrical resistivity, and κ is the thermal conductivity. Conventional thermoelectric bulk materials with higher ZT values include Bi₂Te₃ and PbTe, which, however, exhibit thermal and chemical instabilities in air at elevated temperatures, and contain toxic, scarce, or expensive elements.^{1–3)} Nevertheless, oxide materials could be potential candidates for thermoelectric applications owing to their advantages over the heavy metallic alloys in thermal and chemical robustness values, although their potential for such applications has not yet been demonstrated. Typical p-type thermoelectric oxides are layered cobaltites such as Ti-doped $Ca_3Co_4O_9 (ZT = 0.3 \text{ at } 1000 \text{ K})^{4}$ and $Na_yCoO_2 (ZT = 0.8 \text{ at }$ 1050 K),⁵⁾ in which a relatively higher Seebeck coefficient and a lower thermal conductivity are achieved owing to their layered structure. The crystal structure of Na_vCoO₂ consists of a single-atomic Na layer sandwiched between two CoO₂ layers with edge-shared CoO_6 octahedra.⁶⁾ It is known that Na_vCoO₂ shows a wide range of Na nonstoichiometry and consists of the following three types of crystal structure depending on the Na content y: P3 type (β phase, 0.55 < y < 0.6), P2 phase (γ phase, 0.6 < y < 0.75), and O3 phase (α phase, 0.9 < y < 1.0).⁷) As y decreases from one, the average valence of cobalt increases from +3 toward +4, where the concentration of magnetic Co^{4+} ions [S = 1/2 for low spin (LS), S = 3/2 for intermediate spin (IS), or S = 5/2for high-spin (HS) states] increases in a nonmagnetic Co³⁺ (S = 0 for LS state) matrix and electronic and magnetic properties change depending on y. At about y = 0.7, Na_vCoO₂ exhibits an unusually large thermoelectric power and a metallic and high electrical conductivity simultaneously.^{8,9)} To enhance the thermoelectric properties of Na_vCoO₂, the Co-site substitution by 3d transition metal elements such as Cr, Mn, Fe, and Ni,^{10–12)} or other elements such as Zn, B, Ti, and Bi,^{10,13–15)} and the Na-site substitution for the alkalineearth element (Ca)¹⁶⁾ have been widely investigated. To the best of our knowledge, the maximum *ZT* value of 0.68 was achieved at 965 K for the Na_y(Co_{0.95}Zn_{0.05})O₂ sample in polycrystals.¹⁰⁾

Li_vCoO₂ has a layered structure similarly to Na_vCoO₂ and is the cathode material most commonly used for Li rechargeable batteries, since Li ions can be removed from and inserted into LivCoO2 repeatedly through an electrochemical method.¹⁷) The electrochemical behavior and crystal structure of the LivCoO2 system are well established for $0.5 \le y \le 1.0$,^{18,19} in which the following three types of regions exist depending on the Li content y; O3-R1 type (0.5 < y < 0.75), O3-R2 phase (0.94 < y < 1.0), and twophase-coexistence region (0.75 < y < 0.94).²⁰⁾ Li_vCoO₂ is known to exhibit a fairly large Seebeck coefficient comparable to that of Na_vCoO₂, although the electrical resistivity is rather high.^{20,21)} The thermoelectric and magnetic properties of Li_vCoO₂ have been systematically investigated at temperatures lower than 300 K for polycrystals^{22,23)} and thin films.²⁴⁾ To extend the cyclability and enhance the capacity of electrochemical Li//LiCoO2 cells, numerous species of cations have been substituted for the Co site, such as Ni, Mn, Cr, Al, and Fe.^{25–29)} The electrical conductivity and Seebeck coefficient of Mg-doped LiCoO2 have been reported, with Mg-doped $Li_v(Co_{1-x}Mg_x)O_2$ samples showing a higher electrical conductivity than nondoped samples.³⁰⁾ The Co site substitution by the divalent cations in LiCoO₂ introduces the magnetic Co⁴⁺ ions in a nonmagnetic Co³⁺ matrix, which is similar to the effect in Li_vCoO₂ obtained by the electrochemical technique. However, all the thermoelectric properties of the Li_vCoO₂ system such as $\rho(T)$ and S(T) were only observed at temperatures lower than room temperature.^{23,31}) There is no reported investigation of the thermoelectric properties for the $Li_{v}(Co_{1-x}M_{x})O_{2}$ system at higher temperatures. In the present study, we investigated the thermoelectric properties of $LiCo_{1-x}M_xO_2$ (M = Cu, Mg, Ni, Zn) up to 1200 K, and compared them with those of the Li_vCoO₂ and Na_vCoO₂ systems.

2. Experimental procedure

To fabricate $LiCo_{0.8}M_{0.2}O_2$ (M = Cu, Ni, Zn) and $LiCo_{1-x}$ -

 Mg_xO_2 (0 $\le x \le 0.3$) materials, Li₂CO₃ (99.9%), Co₃O₄ (99.9%), CuO (99.9%), MgO (98%), NiO (99.9%), and ZnO (99.5%) fine powders were used as raw materials. These were weighed with a stoichiometoric ratio and mixed for 0.5 h using an automatic mortar in air. They were heated at 1173 K for 12 h in air and then furnace-cooled. The obtained precursor was pulverized and mixed in air for 0.5 h using an automatic mortar. The precursor powders were sintered by the SPS apparatus (NJS LABOX-110C) under a uniaxial pressure of 40-50 MPa at 1073 K for 10 min in vacuum. The obtained pellets were heat-treated at 1173 K for 2 h in air to control the oxygen stoichiometry. The relative density of the obtained pellets (10 mm in diameter and 9 mm in thickness) was about 90% of the ideal one. In this study, the Li contents in the sintered materials are supposed to be a nominal composition, assuming that the evaporation of lithium is negligibly small.

Powder X-ray diffraction (XRD) measurements were performed (Rigaku Multi Flex) at room temperature using Cu K α radiation to confirm the impurity phase in the sintered bulk materials. The electrical resistivity $\rho(T)$ and Seebeck coefficient S(T) were simultaneously measured in the temperature range from 300 to 1200 K for a rectangular bar cut from the pellet using an automated measuring system (Ozawa Science RZ2001i), and the thermoelectric power factor $P = S^2/\rho$ was calculated. The thermal conductivity $\kappa(T)$ was measured in vacuum by a laser flash method (Ulvac-Riko TC-7000) from 300 to 873 K. The $\kappa(T)$ and $\rho(T)$ values below 300 K were also measured by a steady-state heat flow method and a four-probe method, respectively, using a laboratorybuilt measuring system.³²⁾ The dimensionless figure of merit, $ZT = S^2 T / \rho \kappa$, was estimated using these measured values with about 20% uncertainty for each measured value.

3. Results and discussion

Figures 1(a) and 1(b) show the normalized XRD patterns of the LiCo_{0.8} $M_{0.2}O_2$ samples [M = Cu, Mg, Ni, Zn, and Co (nondoped)] and the magnification around the 104 peak, respectively. Although LivCoO2 was reported to show a biphasic regime at $0.75 \le y \le 0.94$, all the diffraction peaks are readily indexed on the basis of the trigonal space group R3m, and a small number of impurity phases of raw oxides with substituted elements were detected. The substitution limit of Mg for the Co site was reported to be about 5%.³⁰⁾ Each M ion seemed to substitute Co³⁺ ions up to the solubility limit, since the diffraction peak of raw oxides was detected in each sample. In Fig. 1(b), the peak angle of the 104 diffraction in the M = Cu, Zn samples is the same as that in $LiCoO_2$. On the other hand, that in the M = Mg, Ni samples shifts toward a lower angle. The ionic radius of the Co^{3+} ion is 0.0545 nm, which is smaller than that of all the M ions: Mg^{2+} (0.072 nm), Cu^{2+} (0.073 nm), Ni^{2+} (0.069 nm), and Zn^{2+} (0.074 nm).³³ These results suggest that Mg and Ni ions are easily substituted for the Co site, but the solubility limit of Cu and Zn for the Co site is still small.

Figure 2 presents the temperature dependence of the electrical resistivity $\rho(T)$, Seebeck coefficient S(T), and thermoelectric power factor P(T) of the LiCo_{0.8}M_{0.2}O₂ samples. The $\rho(T)$ of all the samples shown in Fig. 2(a) depicts a semiconducting behavior, and the absolute value of ρ changes depending on the species of the M ion. The Mg-doped

Fig. 1. (Color online) (a) XRD patterns of $LiCo_{0.8}M_{0.2}O_2$ samples [M = Cu, Mg, Ni, Zn, and Co (nondoped)]. (b) Enlarged XRD patterns of the 104 peak for each sample.

sample shows the lowest $\rho(T)$, which is about four orders of magnitude smaller than that of the nondoped sample at 300 K. These results are consistent with the peak shift of the XRD diffraction, as shown in Fig. 1(b), in which M ions, especially Mg²⁺ ions, substitute for the Co³⁺ site and create hole carriers.

In Fig. 2(b), the S(T) value of the Mg- and Ni-doped samples is the lowest in this study. Since the Seebeck coefficient is inversely proportional to $\log n$ (n: carrier concentration) in a classical wide-gap semiconductor model, the reduced S value might be caused by the enhanced carrier concentration, and the $\rho(T)$ and S(T) values are closely related to each other. However, overall, all the S(T) values slightly increased with increasing T, which is inconsistent with the above relationship. The thermoelectric power factor $P(T) = S^2/\rho$ as shown in Fig. 2(c) increases with increasing T, and that of the Mg-doped sample is the highest with $2.38 \times 10^{-4} \,\mathrm{W}\,\mathrm{m}^{-1}\,\mathrm{K}^{-2}$ at 1173 K, which results from both the lowest $\rho(T)$ and moderate S(T) values. As shown in Figs. 2(a)–2(c), the reported ρ , S, and P values of Li_{0.75}CoO₂. at 293 K are also shown,²³⁾ in which the average Co valence is +3.25. These values are almost the same as those of the $LiCo_{0.8}Mg_{0.2}O_2$ sample with the average Co valence of +3.2. In this manner, Mg doping effectively creates positive (hole) carriers, and the Mg-doped sample shows similar thermoelectric properties to Li_vCoO₂.

It was found that Mg doping creates hole carriers effectively and shows better thermoelectric properties, as shown in Fig. 2. To obtain optimum Mg contents, the thermoelectric properties of the $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$ samples were investigated. Figure 3(a) shows the XRD patterns of $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$

Fig. 2. (Color online) Temperature dependence of (a) electrical resistivity $\rho(T)$, (b) Seebeck coefficient S(T), and (c) thermoelectric power factor P(T) of LiCo_{0.8}M_{0.2}O₂ samples [M = Cu, Mg, Ni, Zn, and Co (nondoped)]. Those for the Li_{0.75}CoO₂ sample in Ref. 23 at 293 K are also shown.

 $(0 \le x \le 0.3)$. Figure 3(b) shows the lattice constants *a* and *c* of the LiCo_{1-x}Mg_xO₂ samples as a function of *x*. The inset shows the enlarged XRD patterns near the 104 peak for each sample. For $x \le 0.1$, the peak of the MgO raw powder was not confirmed, but for $x \ge 0.2$, the peak can be detected and increases in intensity with increasing *x*. In Fig. 3(b), the diffraction angle of the 104 peak decreases gradually with increasing *x* up to x = 0.2 and then tends to saturate at x = 0.3, which suggests that the Mg²⁺ ion substitutes for the Co³⁺ site with *x* and then the substitution saturates. The lattice constants of the trigonal crystal structure *a* and *c*, which were calculated using the 003 and 104 peaks, changed, depending on the Mg²⁺ substitution.

Figure 4 shows the temperature dependence of the electrical resistivity $\rho(T)$, Seebeck coefficient S(T), and thermoelectric power factor P(T) of $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$ samples ($0 \le x \le 0.3$). The semiconducting $\rho(T)$ behavior becomes weak and the absolute ρ value decreases with increasing Mg

Fig. 3. (Color online) (a) XRD patterns of the $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$ samples $(0 \le x \le 0.3)$. (b) Lattice constants *a* and *c* of the $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$ samples as a function of *x*. The inset shows the enlarged XRD patterns of the 104 peak for each sample.

content *x*. The absolute *S*(*T*) value shown in Fig. 4(b) gradually decreases with increasing *x* owing to the decrease in $\rho(T)$ and then saturates. These values for the *x* = 0.2 and 0.3 samples are almost the same, which is consistent with the saturation tendency shown in Fig. 3(b). The power factor *P*(*T*), which was estimated using $\rho(T)$ and *S*(*T*), increases with increasing *x* and then also saturates for *x* = 0.3. The maximum power factor was formed to be 2.38×10^{-4} W m⁻¹ K⁻² at 1173 K for the *x* = 0.2 and 0.3 samples. We calculated the *P* value of the LiCo_{0.94}Mg_{0.06}O₂ at 300 K using the reported $\rho(T)$ and *S*(*T*) values,³⁰⁾ which was smaller than that of the present sample. The difference may result from the different fabrication processes used.

In the Li_yCoO₂ system, the magnetic and related $\rho(T)$ anomalies were detected at 170 K at y = 0.7-0.67 and $0.5.^{23,34,35}$ Mukai et al. suggested that the transition at 170 K is not magnetic but originates from either charge ordering or a change in spin state.³⁴ Figure 5 shows the $\rho(T)$ of the present LiCo_{1-x}Mg_xO₂ samples at T < 300 K. $\rho(T)$ shows a semiconducting behavior similarly to that of the samples at higher temperature. There is no anomaly in $\rho(T)$ at around 170 K for the samples. These results are in clear contrast to those of the Li_yCoO₂ system are not necessarily reproduced in the LiCo_{1-x}Mg_xO₂ system.

Figure 6 shows the relationship between the power factor *P* at 300 K and the average Co valence for the present $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$ samples ($0 \le x \le 0.3$). A similar relationship for the Li_yCoO_2 system at 293 K has also been shown,²³ which was calculated by us. The *P* value of the $\text{LiCo}_{1-x}\text{Mg}_x$ -

Fig. 4. (Color online) Temperature dependence of (a) electrical resistivity $\rho(T)$, (b) Seebeck coefficient S(T), and (c) power factor P(T) of $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$ samples ($0 \le x \le 0.3$). The extracted ρ and S values, and the estimated P values from Refs. 23 and 30 are also plotted for reference.

O₂ showed a domelike dependence and reached a maximum at the Co valence of 3.2–3.3 (x = 0.2-0.3) with a continuous change, which is the same as for the Li_yCoO₂ system with a two-phase coexistence region (0.75 < y < 0.94). A similar relationship for the Na_yCoO₂ polycrystals is also shown in the figure,^{36,37)} in which a similar dome-shaped relationship can be seen at the center of the Co valence of 3.2. However, the *P* value of the LiCo_{1-x}Mg_xO₂ system is about two orders of magnitude smaller than that of the Na_yCoO₂ system, which results from the relatively large ρ value of the LiCo_{1-x}Mg_xO₂ and Li_yCoO₂ systems, even though comparably large *S* values are achieved.

Figure 7 shows the temperature dependence of the thermal conductivity $\kappa(T)$ of the LiCo_{0.8}M_{0.2}O₂ samples [M = Cu, Mg, Ni, Zn, and Co (nondoped)] at low and high temperatures. The $\kappa(T)$ of the nondoped sample shows a large peak at a low temperature, which is in clear contrast to the reported result;³⁸⁾ the absolute value of $\kappa(T)$ is small and $\kappa(T)$ increases

Fig. 5. (Color online) Temperature dependence of the $\rho(T)$ of the LiCo_{1-x}Mg_xO₂ samples (0.05 $\leq x \leq 0.3$) at T < 300 K.

Fig. 6. (Color online) Relationship between the power factor *P* at 300 K and the average Co valence for the present $\text{LiCo}_{1-x}\text{Mg}_x\text{O}_2$ samples ($0 \le x \le 0.3$). Similar relationships for the Li_yCoO_2 system in Ref. 23 at 293 K and for the Na_yCoO₂ system (polycrystals) estimated from Refs. 36 and 37 at 300 K are also shown.

Fig. 7. (Color online) Temperature dependence of the thermal conductivity $\kappa(T)$ for the LiCo_{0.8}M_{0.2}O₂ samples [M = Cu, Mg, Ni, Zn, and Co (nondoped)] at (a) *T* < 300 K and (b) 300 < *T* < 900 K.

monotonically with *T*. The $\kappa(T)$ peak of the LiCo_{0.8}M_{0.2}O₂ samples was markedly suppressed by the Co-site substitution, depending on the species of the M element; Mg and Ni doping processes effectively suppressed the $\kappa(T)$ value. These results are closely related to the solubility limit of the M element for the Co site, as shown in Figs. 1(b) and 2(a). κ is the sum of the electronic thermal conductivity κ_e and phonon thermal conductivity κ_{phonon} ($\kappa = \kappa_e + \kappa_{phonon}$). In the present samples, the

Fig. 8. (Color online) Temperature dependence of the dimensionless figure of merit ZT(T) of the LiCo_{0.8}M_{0.2}O₂ samples [M = Cu, Mg, Ni, Zn, and Co (nondoped)].

thermal conduction entirely depends on phonons because the electronic contribution is negligibly small owing to the large $\rho(T)$. For example, the κ_e of the LiCo_{0.8}Mg_{0.2}O₂ sample is estimated to be 0.77 mW cm⁻¹ K⁻¹ at 800 K using Fig. 2(a) on the basis of the Wiedemann-Franz law, which is about 1% of the measured κ shown in Fig. 7(b). There have been many reports on the thermal conductivity of the Na_yCoO_2 and $Na_{v}(Co_{1-x}M_{x})O_{2}$ single crystals,^{5,39,40)} and polycrystals.⁴¹⁾ However, the absolute κ values reported are fairly scattered and reliable results of the x dependence of $\kappa(T)$ have not yet been reported; the typical in-plane $\kappa(T)$ values for single crystal are 20 mW cm⁻¹ K⁻¹ at 300 K without a low-temperature $\kappa(T)$ peak³⁹⁾ and 40–80 mW cm⁻¹ K⁻¹ at 300 K with a low-temperature $\kappa(T)$ peak.^{39,40)} Since the $\kappa(T)$ value for a polycrystal is generally smaller than that for a single crystal, especially for a layered material, the $\kappa(T)$ value for Na_vCoO₂ polycrystals seems to be considerably lower than that for single crystals. In this sense, the $\kappa(T)$ of the Li_v(Co_{1-x}M_x)O₂ polycrystals shown in Fig. 7 is larger than that of the Na_vCoO₂ polycrystals even at higher temperatures, which is disadvantageous for a thermoelectric material from the viewpoint of $\kappa(T)$.

Figure 8 shows the temperature dependence of the dimensionless figure of merit ZT(T) of the LiCo_{0.8}M_{0.2}O₂ samples. Among the samples, the M = Mg sample shows the highest ZT value of 0.024 at 876 K, which is considerably smaller than that of the Na_yCoO₂ system, resulting from the relatively high ρ and κ values. Although Li_yCoO₂ and Na_yCoO₂ systems have similar crystal structures, a slight difference exists. Hertz et al. compared the structures of Na_yCoO₂ and Li_yCoO₂ and reported that the CoO₂ layer changes substantially with the alkali content *y* in the former, but is relatively constant in the latter, and that the CoO₆ octahedra in Li_yCoO₂ is less distorted.³⁵⁾ Such a slight difference may affect the $\rho(T)$, S(T), and $\kappa(T)$ values, and also the magnetic properties. The physical properties for both systems must be investigated further in detail.

4. Conclusions

The thermoelectric properties of $\text{LiCo}_{1-x}M_xO_2$ samples (M = Cu, Mg, Ni, Zn) have been investigated for the first time up to 1200 K and the thermoelectric potential of the $\text{LiCo}_{1-x}M_xO_2$ material has been discussed and compared with those of the Li_vCoO_2 and Na_vCoO_2 systems. The important

results and conclusions obtained from this study are summarized as follows.

1) In the LiCo_{0.8}M_{0.2}O₂ system, the M = Mg sample displays the most effective thermoelectric properties; the thermoelectric power factor *P* is 2.38×10^{-4} W m⁻¹ K⁻² at 1173 K and the dimensionless figure of merit *ZT* is 0.024 at 876 K. These values at 300 K are comparable to the reported values of Li_{0.75}CoO₂, suggesting that the manner of Co site substitution by Mg ions is the same as that of Co⁴⁺ creation to Li nonstoichiometry in the Li_vCoO₂ system.

2) In the LiCo_{1-x}Mg_xO₂ series ($0 \le x \le 0.3$), the electrical resistivity $\rho(T)$ decreases with increasing Mg contents *x* up to 0.2, and then saturates at *x* = 0.3. The better thermoelectric performance of the *P* value was achieved at *x* = 0.2–0.3 at higher temperatures.

3) The thermoelectric properties of the LiCo_{1-x}Mg_xO₂ series are lower than those of the Na_yCoO₂ series under an identical average Co valence because of the higher electrical resistivity $\rho(T)$ and higher thermal conductivity $\kappa(T)$ at higher temperatures.

Acknowledgment

This work was performed under the Inter-university Cooperative Research Program of the Institute for Materials Research, Tohoku University (16K0009 and 16K0203).

- B. Poudel, Q. Hao, Y. Ma, Y. C. Lan, A. Minnich, B. Yu, X. Yan, D. Z. Wang, A. Muto, D. Vashaee, X. Y. Chen, J. M. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
- A. D. LaLonde, Y. Z. Pei, and G. J. Snyder, Energy Environ. Sci. 4, 2090 (2011).
- K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818 (2004).
- 4) L. Xu, F. Li, and Y. Wang, J. Alloys Compd. 501, 115 (2010).
- K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001).
- C. Fouassier, G. Matejka, J.-M. Reau, and P. Hagenmuller, J. Solid State Chem. 6, 532 (1973).
- C. Delmas, J. Braconnier, C. Fouassier, and P. Hagenmuller, Solid State Ionics 3–4, 165 (1981).
- I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).
- M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal, Jr., R. J. Cava, and N. P. Ong, Nat. Mater. 5, 537 (2006).
- M. Ito, T. Nagira, Y. Oda, S. Katsuyama, K. Majima, and H. Nagai, Mater. Trans. 43, 601 (2002).
- 11) M. Ito and T. Nagira, Mater. Trans. 46, 1456 (2005).
- 12) L. Wang, M. Wang, and D. Zhao, J. Alloys Compd. 471, 519 (2009).
- 13) E. Altin, E. Oz, S. Demirel, and A. Bayri, Appl. Phys. A 119, 1187 (2015).
- 14) A. Klyndyuk, N. Krasutskaya, L. Evseeva, E. Chizhova, and S. Tanaeva, Univ. J. Mater. Sci. 3, 27 (2015).
- 15) Z. Tian, X. Wang, J. Liu, Z. Lin, Y. Hu, Y. Wu, C. Han, and Z. Hu, J. Alloys Compd. 661, 161 (2016).
- 16) E. Ermawan and S. Poertadji, Int. J. Eng. Technol. 15, 42 (2015).
- 17) K. Nakamura, H. Ohno, K. Okamura, Y. Michihiro, T. Moriga, I.
- Nakabayashi, and T. Kanashiro, Solid State Ionics 177, 821 (2006).
- 18) N. Reimers and J. R. Dalm, J. Electrochem. Soc. 139, 2091 (1992).
- 19) T. Ohzuku and A. Ueda, J. Electrochem. Soc. 141, 2972 (1994).
- M. Ménétrier, I. Saadoune, S. Levasseur, and C. Delmas, J. Mater. Chem. 9, 1135 (1999).
- 21) J. Molenda, A. Stoklosa, and T. Bak, Solid State Ionics 36, 53 (1989).
- 22) T. Motohashi, T. Ono, Y. Sugimoto, S. Kikkawa, R. Kanno, M. Karppinen, and H. Yamauchi, Phys. Rev. B 80, 165114 (2009).
- 23) T. Motohashi, Y. Sugimoto, T. Sasagawa, W. Koshibae, T. Tohyama, and S. Kikkawa, Phys. Rev. B 83, 195128 (2011).
- 24) Y. Ishida, A. Mizutani, K. Sugiura, H. Ohta, and K. Koumoto, Phys. Rev. B 82, 075325 (2010).
- 25) C. Delmas, I. Saadoune, and A. Rougier, J. Power Sources 44, 595 (1993).

- 26) R. Stoyanova, E. Zhecheva, and L. Zarkova, Solid State Ionics 73, 233 (1994).
- 27) C. D. W. Jones, E. Rossen, and J. R. Dahn, Solid State Ionics 68, 65 (1994).
 28) Y. I. Yang, B. Huang, H. Wang, G. R. Maslkaly, G. Ceder, D. R. Sadoway,
- Y. M. Chiang, H. Liu, and H. Tamura, J. Power Sources 81–82, 589 (1999).
 H. Kobayashi, H. Shigemura, M. Tabuchi, H. Sakaebe, K. Ado, H.
- Kageyama, A. Hirano, R. Kanno, M. Wakita, S. Morimoto, and S. Nasu, J. Electrochem. Soc. 147, 960 (2000).
- 30) S. Levasseur, M. Menetrier, and C. Delmas, Chem. Mater. 14, 3584 (2002).
- 31) D. Carlier, M. Menetrier, and C. Delmas, J. Mater. Chem. 11, 594 (2001).
- 32) H. Fujishiro, M. Ikebe, T. Naito, K. Noto, S. Kobayashi, and S. Yoshizawa, Jpn. J. Appl. Phys. 33, 4965 (1994).
- 33) R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).
- 34) K. Mukai, Y. Ikedo, H. Nozaki, J. Sugiyama, K. Nishiyama, D. Andreica,

A. Amado, P. L. Russo, E. J. Ansaldo, J. H. Brewer, K. H. Chow, K. Ariyoshi, and T. Ohzuku, Phys. Rev. Lett. **99**, 087601 (2007).

- 35) J. T. Hertz, Q. Huang, T. McQueen, T. Klimczuk, J. W. G. Bos, L. Viciu, and R. J. Cava, Phys. Rev. B 77, 075119 (2008).
- 36) T. Motohashi, E. Naujalis, R. Ueda, K. Iwasa, M. Karppinen, and H. Yamauchi, Appl. Phys. Lett. 79, 1480 (2001).
- 37) P. Liu, G. Chen, Y. Cui, H. Zhang, F. Xiao, L. Wang, and H. Nakano, Solid State Ionics 179, 2308 (2008).
- 38) K. Takahata and I. Terasaki, Jpn. J. Appl. Phys. 41, 763 (2002).
- 39) X. Tang and T. M. Tritt, J. South Carolina Acad. Sci. 6, 10 (2008).
- 40) A. Satake, H. Tanaka, T. Ohkawa, T. Fujii, and I. Terasaki, J. Appl. Phys. 96, 931 (2004).
- 41) K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh, and I. Terasaki, Phys. Rev. B 61, 12551 (2000).