Supercond. Sci. Technol. 23 (2010) 025013 (6pp)

# Estimation of temperature rise from trapped field gradient on superconducting bulk magnetized by multi-pulse technique

# Hiroyuki Fujishiro<sup>1</sup>, Tomoyuki Naito<sup>1</sup>, Kosuke Kakehata<sup>1</sup>, Yosuke Yanagi<sup>2</sup> and Yoshitaka Itoh<sup>2</sup>

<sup>1</sup> Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
<sup>2</sup> IMRA Material R&D Co. Ltd, 2-1 Asahi-cho, Kariya 448-0032, Japan

E-mail: fujishiro@iwate-u.ac.jp

Received 29 July 2009, in final form 6 October 2009 Published 18 December 2009 Online at stacks.iop.org/SUST/23/025013

#### Abstract

Trapped field profiles of the GdBaCuO superconducting bulk of 65 mm in diameter have been measured as magnetized using a successive pulsed-field application (SPA) and a subsequent iterative pulsed-field magnetization with reducing amplitude (IMRA). The trapped field gradient  $dB_T/dx$  on the bulk periphery increases concomitantly with increasing pulse number in the IMRA part. The  $dB_T/dx$  value on the bulk magnetized by field-cooled magnetization (FCM) was also measured at each temperature  $T_F$ . The maximum temperature  $T_{max}$  for each pulse was estimated by comparing the  $dB_T/dx$  value for the IMRA part with that for the FCM at each temperature. Furthermore,  $T_{max}$  was measured directly for the SPA part in the drilled hole in the bulk. The estimated  $T_{max}$  was nearly equal to the measured  $T_{max}$ , which thereby confirmed that  $T_{max}$  after applying the pulsed field can be estimated using the  $dB_T/dx$  value in the bulk periphery. The enhancement of the total trapped flux  $\Phi_T^P$  in the IMRA part with increasing pulse number results from enhancement of the critical current density  $J_c$  because of the reduction in  $T_{max}$ .

#### 1. Introduction

Practical applications using REBaCuO superconducting bulk (RE: rare earth ions and Y) as a strong quasi-permanent magnet have been intensively investigated for magnetic separation for environmental cleaning [1], drug delivery systems (DDSs) in medical applications [2] and sputtering cathodes to grow thin films for use in semiconductor devices [3]. Fieldcooled magnetization (FCM) using a superconducting magnet is a conventional technique to magnetize bulk samples. The trapped field  $B_{\rm T}^{\rm FC}$  and the total trapped flux  $\Phi_{\rm T}^{\rm FC}$  by FCM achieves the maximum abilities of the bulk. On the other hand, pulsed-field magnetization (PFM) has been studied intensively because it is compact, mobile and uses no superconducting magnet for practical applications. The trapped field  $B_T^P$  by PFM was, however, smaller than  $B_{\rm T}^{\rm FC}$  because of the large temperature rise due to the dynamical motion of the magnetic flux. To enhance  $B_T^P$ , it is necessary to decrease the temperature rise. Several approaches have been used such as a multipulse technique with stepwise cooling (MPSC) [4] and an iteratively pulsed-field magnetization with reducing amplitude (IMRA) [5]. We have studied the time and spatial dependences of the temperature, local field and trapped field on the surface of cryo-cooled REBaCuO bulk samples systematically during PFM for various starting temperatures  $T_s$  and applied fields  $B_{\rm ex}$  [6, 7]. Considering the experimental results obtained, we have proposed a new PFM technique—designated as the modified multi-pulse technique with stepwise cooling (MMPSC)—and have produced the highest trapped field of 5.20 T at 29 K on a GdBaCuO bulk sample of 45 mm diameter, in which only 3.6 T had been trapped using a single-pulse application at 40 K [8].

Recently, REBaCuO superconducting bulks with diameter larger than 60 mm have been put onto the commercial market. Even a single-grain bulk of 140 mm diameter can be realized [9]. According to a Bean critical state model [10], a trapped field  $B_T$  at the bulk centre is proportional to the diameter of the bulk disc d. A total trapped flux density  $\Phi_T$  is proportional to  $d^3$ , if the critical current density  $J_c$  of the bulk material is of equal value. The large  $\Phi_T$  value is especially

**Table 1.** The trapped field  $B_T$  and total trapped fluxes  $\Phi_T$  on the GdBaCuO bulk of 65 mm in diameter and 18 mm in thickness used in this study magnetized by the SPA, MMPSC and IMRA methods. Those on the GdBaCuO bulk of 45 mm in diameter and 18 mm in thickness are also shown. (Note: SPA: successive pulsed-field application. MMPSC: modified multi-pulse technique with stepwise cooling. IMRA: iteratively pulsed-field magnetization with reducing amplitude. FCM: field-cooled magnetization.)

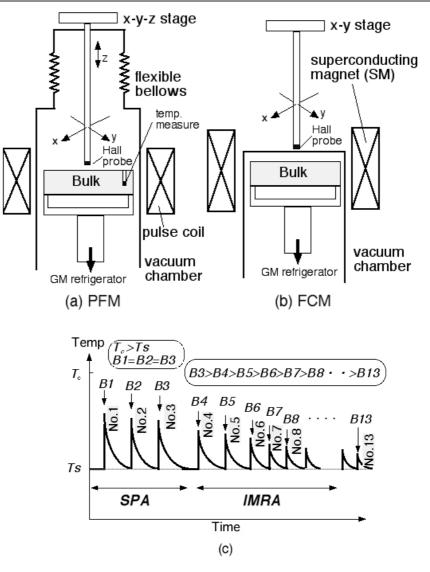
|                                                         | Method       | Ø65 mm<br>bulk [11, 13]<br>(at 40 K) | Ø45 mm<br>bulk [14]<br>(at 30 K) |
|---------------------------------------------------------|--------------|--------------------------------------|----------------------------------|
| $B_{\rm T}^{\rm FC}$ (T)                                | FCM          | 1.9 (77 K)                           | 1.8                              |
| D <sup>P</sup> (TT)                                     | CDA          | 1.2                                  | (77 K)                           |
| $B_{\rm T}^{\rm P}({\rm T})$                            | SPA          | 1.3                                  | 1.9                              |
| $B_{\mathrm{T}}^{\mathrm{P}}(\mathrm{T})$               | MMPSC        | 3.0                                  | 3.1                              |
| $B_{\mathrm{T}}^{\mathrm{P}}(\mathrm{T})$               | SPA + IMRA   | 1.4                                  | _                                |
| $B_{\mathrm{T}}^{\mathrm{P}}(\mathrm{T})$               | MMPSC + IMRA | _                                    | 3.14                             |
| $\Phi^P_T \left(0.5 \text{ mm}\right) (\text{mWb})$     | SPA          | 2.9                                  | 1.96                             |
| $\Phi^{P}_{T} \left(0.5 \text{ mm}\right) (\text{mWb})$ | MMPSC        | _                                    | 1.64                             |
| $\Phi^P_T \left(0.5 \text{ mm}\right) (\text{mWb})$     | SPA + IMRA   | 5.05                                 |                                  |
| $\Phi^P_T \left(0.5 \text{ mm}\right) (\text{mWb})$     | MMPSC + IMRA | _                                    | 2.51                             |
| $\Phi^{P}_{T}$ (4 mm) (mWb)                             | SPA + IMRA   | 4.1                                  | _                                |
| $\Phi^{P}_{T}$ (5 mm) (mWb)                             | MMPSC + IMRA | _                                    | 1.79                             |
| $\Phi_T^{FC} (4 \text{ mm}) (\text{mWb})$               | FCM          | 4.44 (48 K)                          | _                                |

useful for applications such as electric motors/generators and sputtering cathodes.

We have investigated the trapped field characteristics on the Ø65 mm GdBaCuO bulk by successive pulsed-field application (SPA) and the MMPSC method [11, 12]. Table 1 presents results of  $B_{\rm T}$  and  $\Phi_{\rm T}$  on  $\emptyset$ 65 mm GdBaCuO bulk obtained using several magnetizing techniques. The results for Ø45 mm GdBaCuO bulk are also shown for comparison. The maximum trapped field on the  $\emptyset 65$  mm bulk was as low as  $B_{\rm T}^{\rm P} = 1.3$  T by SPA and  $B_{\rm T}^{\rm P} = 3.0$  T by MMPSC at 40 K, which was smaller than those on the  $\emptyset$ 45 mm bulk because of the lower  $J_c$ . However, the  $\Phi_T^P$  value for a large bulk can be enhanced easily using the IMRA method; the  $\Phi_T^P$ (0.5 mm) value, which was measured at z = 0.5 mm above the bulk surface, was as high as 5.05 mWb on the  $\emptyset$ 65 mm bulk at  $T_s = 40$  K using the SPA + IMRA method, which was about 1.7 times larger than that obtained using the SPA method ( $\Phi_T^P = 2.9 \text{ mWb}$ ) [13]. It was 2.2 times larger than that on the  $\emptyset$ 45 mm bulk by the MMPSC + IMRA method  $(\Phi_T^P = 2.51 \text{ mWb})$  [14]. The  $\Phi_T^P$  (4 mm) value (=4.1 mWb) at 40 K using the SPA + IMRA method was as high as the  $\Phi_{T}^{FC}$  (4 mm) value (=4.44 mWb) obtained using FCM under  $B_{\rm ex} = 3 \,{\rm T}$  at 48 K [13].

The increase of the  $\Phi_T^P$  value obtained using the IMRA part results from the reduction in temperature rise by reducing the amplitude of the magnetic pulse [6]. As a result, the effective  $J_c$  increases and the magnetic flux is additionally trapped in the bulk periphery. The gradient of the magnetic field, trapped in the bulk periphery, is expected to be closely related to the maximum temperature after the magnetic pulse application if Bean's model governs, even roughly, the magnetizing process during PFM. However, no experimental results have been reported in the relevant literature.

**Table 2.** The conditions from A to C in the SPA + IMRA method performed in this study.


| Condition      | Condition A | Condition B | Condition C |
|----------------|-------------|-------------|-------------|
| T <sub>s</sub> | 40 K        | 40 K        | 60 K        |
| B1 (=B2 = B3)  | 6.6 T       | 5.4 T       | 6.6 T       |
| <i>B</i> 5     | 6.1 T       | 4.9 T       | 6.0 T       |
| <i>B</i> 7     | 5.4 T       | 4.2 T       | 5.3 T       |
| <i>B</i> 9     | 4.9 T       | 3.5 T       | 4.8 T       |
| B11            | 4.2 T       | _           | 4.2 T       |
| <i>B</i> 13    | 3.5 T       | _           | 3.4 T       |

As described in this paper, we measure the magnetic field gradient  $dB_T/dx$  on the  $\emptyset 65$  mm GdBaCuO bulk using the SPA + IMRA method. We estimate the maximum temperature  $T_{\text{max}}$  using the magnetic field gradient with the IMRA part by comparing the  $dB_T/dx$  value with that using FCM. We examine the propriety of the estimation of  $T_{\text{max}}$  using the magnetic field gradient by comparison with the measured  $T_{\text{max}}$  in a small hole in the bulk.

#### 2. Experimental details

A 18 mm thickness Ø65 mm GdBaCuO superconducting bulk disc (Nippon Steel Corp.) was used for this study. The trapped field characteristics for various magnetizing techniques are presented in table 1. Figures 1(a) and (b) respectively show the experimental set-ups for the SPA + IMRA method and for the FCM method. In figure 1(a), the bulk was mounted on a soft iron yoke cylinder and was tightly anchored onto the cold stage of a Gifford-McMahon (GM) cycle helium refrigerator. The magnetizing solenoid coil, which generated a pulse field up to  $B_{\rm ex} = 6.7$  T with a rise time of 12 ms, was placed outside the vacuum chamber. Figure 1(c) presents the experimental sequence used for the SPA + IMRA method. Table 2 shows the conditions of the SPA + IMRA method used for this study. Three conditions A-C were performed with various temperatures and applied fields in the SPA part. The starting temperature  $T_s$  of the bulk was maintained at 40 or 60 K. Three magnetic pulses (nos. 1-3) with nearly identical amplitudes B1 (=B2 = B3) were applied sequentially after re-cooling to  $T_s$ . From the no. 4 pulse, the IMRA process was started; the applied pulsed fields  $B_n$  ( $\leq B_{n-1}$ ) were iteratively reduced to 3.5 T in 0.3 T steps at constant  $T_s$ . Two-dimensional trapped field profiles of  $B_T^P$  (4 mm) and  $B_T^P$  (0.5 mm) were mapped at distances z = 4 or 0.5 mm above the bulk surface, stepwise with a pitch of 1 mm by scanning an axial-type Hall sensor (F W Bell, BHA 921) inside the vacuum chamber using an x-y stage controller. The temperature of the bulk was measured independently during SPA using a Teflon-coated chromel–constantan thermocouple (76  $\mu$ m in diameter) in the hole of 1 mm in diameter and 10 mm in depth drilled in the periphery of the bulk. We confirmed the lack of degradation of superconductivity by drilling a small hole in the bulk.

For the FCM experiment as presented in figure 1(b), the bulk was similarly tightly anchored onto the cold stage of the refrigerator. The FCM was performed at various temperatures  $T_{\rm F}$  from 38 to 85 K using a cryo-cooled superconducting magnet. During FCM, the static magnetic field of 3 T was



**Figure 1.** Experimental set-up around the bulk and magnetizing coil for (a) pulsed-field magnetization (PFM) and (b) field-cooled magnetization (FCM). For PFM and FCM, the trapped field profile was, respectively, measured inside and outside the vacuum chamber. (c) The experimental sequence of the SPA + IMRA method.

decreased to 0 T at 3 mT s<sup>-1</sup>.  $B_T^{FC}$  (4 mm) profiles were measured on the vacuum sheath surface, which was 4 mm from the bulk surface.

### 3. Results and discussion

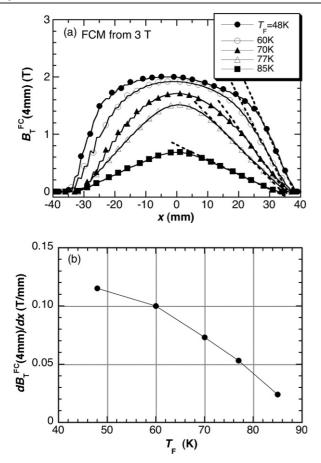

#### 3.1. Trapped field distribution by FCM

Figure 2(a) shows a cross section of the trapped field profile  $B_T^{FC}$  (4 mm) by FCM at various temperatures  $T_F$ . For higher  $T_F$ , the cross section of the  $B_T^{FC}$  (4 mm) profile shows a cone shape, but the maximum  $B_T^{FC}$  (4 mm) value is low at the bulk centre. With decreasing  $T_F$ , the profile changed from conical to trapezoidal and the  $B_T^{FC}$  (4 mm) value increased and then saturated because of the increase of  $J_c$  with decreasing  $T_F$ . The FCM was performed under a constant magnetic field of 3 T. Therefore the saturation tendency took place. It is noteworthy that the magnetic field gradient increases concomitantly with

decreasing  $T_{\rm F}$ , as indicated by the dashed lines in the bulk periphery. According to Bean's model, the gradient of the trapped field is proportional to  $J_c$  [10]. Figure 2(b) presents the gradient of the trapped field  $dB_{\rm T}^{\rm FC}$  (4 mm)/dx as a function of temperature  $T_{\rm F}$ . The gradient decreases with increasing  $T_{\rm F}$ and then falls to zero at  $T_c = 92$  K. Our group reported that the temperature on the bulk surface increased slightly during FCM and that the increase in temperature was enhanced with decreasing  $T_{\rm F}$  and with increasing the descending speed of the magnetic field [15]. The descending speed in this study was 3 mT s<sup>-1</sup>. Using the previous results, the respective temperature rise values were estimated as 4 K at  $T_{\rm F} = 50$  K, 2 K at 60 K and 1 K at 70 K, respectively.

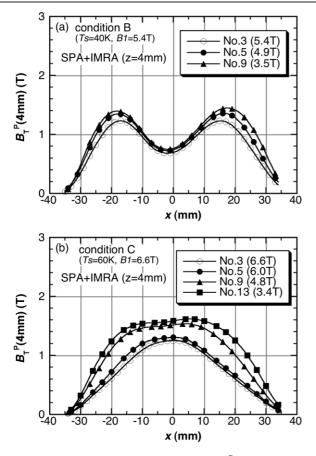
#### 3.2. Trapped field distribution by SPA + IMRA


Figures 3(a) and (b) respectively portray the pulse number dependence of the cross section of the trapped field profile

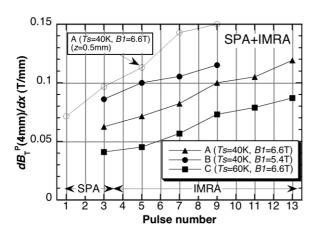


**Figure 2.** Trapped field profiles  $B_T^{FC}$  (4 mm) on the bulk for the FCM from 3 T for various temperatures  $T_{F}$ . (b) Magnetic field gradient  $dB_T^{FC}$  (4 mm)/dx as a function of temperature  $T_F$ .

 $B_{\rm T}^{\rm P}$  (0.5 mm) and  $B_{\rm T}^{\rm P}$  (4 mm) for 'condition A' ( $T_{\rm s}$  = 40 K, B1 = 6.6 T) [13]. In figure 3(a), for the no. 3 pulse in the SPA part, the concave  $B_T^P$  (0.5 mm) profile is apparent. The  $B_{\rm T}^{\rm P}$  (0.5 mm) value at the bulk periphery increased gradually with increasing pulse number. On the other hand, the  $B_T^P$ (0.5 mm) value at the bulk centre increases only slightly. For the no. 13 pulse application (B13 = 3.5 T) in the IMRA part, the  $B_{\rm T}^{\rm P}$  increment at the bulk periphery seemed to saturate. In figure 3(b), the profile becomes broad and the magnitude of the  $B_{\rm T}^{\rm P}$  (4 mm) at the periphery becomes small because the measurement position is distant from the bulk surface. On the other hand, the magnitude of the  $B_T^P$  (4 mm) at the bulk centre was nearly the same as the  $B_{\rm T}^{\rm P}$  (0.5 mm) because of the concave  $B_{\rm T}^{\rm P}$  profile. The magnitude of the  $B_{\rm T}^{\rm P}$  at the bulk centre becomes small on increasing the distance z to larger than z = 6 mm. To compare the magnetic gradient by PFM with that by FCM and to estimate the temperature rise during the SPA + IMRA method, we adopted the  $B_T^P$  (4 mm) profiles for the following discussion, although the magnetic gradient should be measured just above the bulk surface. The  $B_{\rm T}^{\rm FC}(z)$ profile cannot be measured at z = 0.5 mm but at 4 mm because of the experimental limitation. The magnitude of the magnetic gradient for  $B_T^P$  (4 mm) was about 60% that for  $B_T^P$  (0.5 mm).

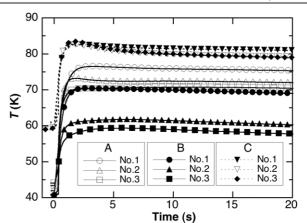

Figure 4(a) depicts the pulse number dependence of the cross section of the trapped field profile  $B_T^P$  (4 mm) for



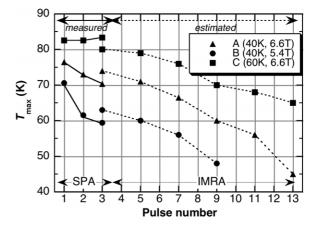

**Figure 3.** The pulse number dependence of the (a)  $B_T^P$  (0.5 mm) and (b)  $B_T^P$  (4 mm) profiles for the SPA + IMRA method of condition A ( $T_s = 40 \text{ K}, B1 = 6.6 \text{ T}$ ).

'condition B' ( $T_s = 40$  K, B1 = 5.4 T). The applied field B1 is smaller than that for condition A. Therefore, the magnetic flux cannot intrude into the bulk centre. For this reason, the trapped field profile becomes more concave. However, the magnetic gradient increased slightly with increasing pulse number in the IMRA part. Figure 4(b) depicts the pulse number dependence of the  $B_T^P$  (4 mm) profiles for 'condition C' ( $T_s = 60$  K, B1 = 6.6 T). The operating temperature  $T_s$  is higher than that for condition A under an identical B1. Therefore, the magnetic flux can penetrate and be trapped at the bulk centre. The magnetic gradient increases concomitantly with increasing pulse number and the trapped field profile changes from conical to trapezoidal. It is noteworthy that the gradient of the trapped field at  $T_s = 60$  K is smaller than that at  $T_s = 40$  K.

Figure 5 presents the pulse number dependences of the magnetic gradient  $dB_T^P$  (4 mm)/dx for three conditions, which were determined from figures 3(b) and 4(a) and (b). The  $dB_T^P$  (4 mm)/dx value for condition B is larger than that for condition A because of the smaller temperature rise for lower applied field. The  $dB_T^P$  (4 mm)/dx value for condition A is greater than that for condition C because of the larger  $J_c$  at lower  $T_s$ . In all cases, the increase of the  $dB_T^P$  (4 mm)/dx value with increasing pulse number in the IMRA part arises from the reduction in the temperature rise. The  $dB_T^P$  (0.5 mm)/dx versus the pulse number n was also shown for condition A in




**Figure 4.** The pulse number dependence of the  $B_T^P$  (4 mm) profiles for the SPA + IMRA method of (a) condition B ( $T_s = 40$  K, B1 = 5.4 T) and (b) condition C ( $T_s = 60$  K, B1 = 6.6 T).



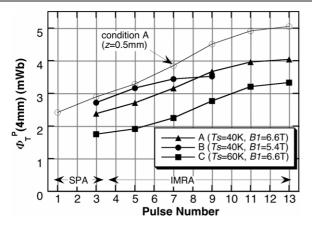

**Figure 5.** The pulse number dependence of the magnetic gradient  $dB_T^P$  (4 mm)/dx for conditions A, B and C, which were estimated from figures 3(b) and 4(a) and (b), respectively. The  $dB_T^P$  (0.5 mm)/dx versus the pulse number was also shown for condition A.

figure 5. The  $dB_T^P$  (0.5 mm)/dx is about 1.6 times larger than the  $dB_T^P$  (4 mm)/dx value and increases concomitantly with increasing pulse number.



**Figure 6.** The time evolution of the temperature T(t) in the bulk for the SPA part of conditions A–C.




**Figure 7.** The pulse number dependence of the estimated  $T_{\text{max}}$  for each applied pulsed field ( $n \ge 3$ , dashed lines) and measured  $T_{\text{max}}$  ( $1 \le n \le 3$ , solid lines) for conditions A–C.

#### 3.3. Measurement of temperature rise in the bulk

Figure 6 presents the time evolution of the temperature T(t) in a small hole drilled in the bulk periphery for the SPA part of conditions A–C. The temperature rise for the no. 1 pulse is the largest and becomes small gradually for subsequent pulses. The maximum temperature  $T_{\text{max}}$  for the no. 1 pulse of condition A was 78 K; its temperature T(t) was decreased gradually to 40 K for 15 min.  $T_{\text{max}}$  for condition C remains constant or increases slightly because of the powerful magnetic flux movement for each pulse.

# 3.4. Estimation of maximum temperature $T_{max}$ during the SPA + IMRA method

We estimated the maximum temperature  $T_{\text{max}}$  for each step in the SPA + IMRA method using the results presented in figures 5 and 2(b). Figure 7 shows the pulse number dependence of the estimated  $T_{\text{max}}^{\text{E}}$  for  $n \ge 3$  as dashed lines. The measured  $T_{\text{max}}^{\text{M}}$  values for  $n \le 3$ , which are indicated in figure 6, are also shown as solid lines. The  $T_{\text{max}}^{\text{E}}$  decreased concomitantly with increasing pulse number for all conditions and approaches  $T_{\text{s}} = 40$  K for conditions A and B and to



**Figure 8.** The pulse number dependence of the total trapped flux  $\Phi_T^P$  (4 mm) for each condition. The  $\Phi_T^P$  (0.5 mm) values for condition A are also shown.

 $T_{\rm s} = 60$  K for condition C. It is noteworthy that the measured and estimated  $T_{\rm max}$  values for n = 3 are nearly equal, which suggests that the gradient of the trapped field profile is useful for estimation of  $T_{\rm max}$ .

Figure 8 depicts the pulse number dependence of the total trapped flux  $\Phi_T^P$  (4 mm) for each condition. The  $\Phi_T^P$  (4 mm) value increases concomitantly with increasing pulse number; finally it saturates. It is noteworthy that the  $\Phi_T^P$  (4 mm) values of condition B from n = 3-7 are larger than those of condition A. The estimated  $T_{max}^E$  of condition B is apparently lower. As a result, the  $J_c$  value is higher than with condition A. However, the maximum  $\Phi_T^P$  (4 mm) value of 4.0 mWb was realized for the subsequent pulsed application of condition A, which was as high as  $\Phi_T^{FC}$  (4 mm) by FCM under  $B_{ex} = 3$  T at 48 K [13]. The  $\Phi_T^P$  (0.5 mm) values for condition B are also shown in the figure, which are about 1.33 times larger than  $\Phi_T^P$  (4 mm).

## 4. Summary

The trapped field profiles of the GdBaCuO superconducting bulk (65 mm in diameter) were measured. The bulk sample was magnetized using a successive pulsed-field application and the subsequent iterative pulsed-field magnetization method with reducing amplitude (SPA + IMRA) and a field-cooled magnetization (FCM). The maximum temperature  $T_{max}$  after heat generation for each pulse in the SPA + IMRA method was estimated through comparison of the magnetic field gradient in the bulk periphery with that after the FCM. Important experimental results and conclusions obtained in this study are summarized as follows.

- (1)  $T_{\text{max}}$  after the pulsed-field magnetization can be estimated using the gradient of the trapped field  $dB_{\text{T}}/dx$  in the bulk periphery by comparison with the magnetic field gradient on the bulk periphery magnetized by FCM.
- (2) The estimated  $T_{\text{max}}$  was nearly the same as the measured  $T_{\text{max}}$ , which was measured directly in the drilled hole in the bulk during the SPA part.
- (3) In a bulk as large as 65 mm in diameter, the total trapped flux Φ<sup>P</sup><sub>T</sub> is enhanced by the IMRA method because of the decrease in the temperature rise, which is effective for practical applications.

#### Acknowledgment

This work is supported in part by a Grant-in-Aid for Scientific Research from the Ministry of the Education, Culture, Sports, Science and Technology, Japan (no. 19560003).

#### References

- Hayashi H, Tsutsumi K, Saho N, Nishijima N and Asano K 2003 *Physica* C 392–396 745
- [2] Mishima F, Takeda S, Izumi Y and Nishijima S 2006 IEEE Trans. Appl. Supercond. 17 2303
- [3] Yanagi Y, Matsuda T, Hazama H, Yokouchi K, Yoshikawa M, Itoh Y, Oka T, Ikuta H and Mizutani U 2005 *Physica* C 426–431 764
- [4] Sander M, Sutter U, Koch R and Klaser M 2000 Supercond. Sci. Technol. 13 841
- [5] Yanagi Y, Itoh Y, Yoshikawa M, Oka T, Hosokawa T, Ishihara H, Ikuta H and Mizutani U 2000 Advances in Superconductivity XII (Tokyo: Springer) p 470
- [6] Fujishiro H, Oka T, Yokoyama K and Noto K 2003 Supercond. Sci. Technol. 16 809
- [7] Fujishiro H, Yokoyama K, Oka T and Noto K 2004 Supercond. Sci. Technol. 17 51
- [8] Fujishiro H, Tateiwa T, Fujiwara A, Oka T and Hayashi H 2006 *Physica* C 445–448 334
- [9] Sakai N, Kita M, Nariki S, Muralidhar M, Inoue K, Hirabayashi I and Murakami M 2006 *Physica* C 445–448 339
- [10] Bean C P 1962 J. Phys. Rev. Lett. 8 250
- [11] Fujishiro H, Tateiwa T, Kakehata K, Hiyama T and Naito T 2008 Physica C 468 1477
- [12] Fujishiro H, Tateiwa T, Kakehata K, Hiyama T, Naito T and Yanagi Y 2007 Supercond. Sci. Technol. 20 1009
- [13] Fujishiro H, Kakehata K, Naito T, Yanagi Y and Itoh Y 2009 Physica C 469 1250
- [14] Fujishiro H, Hiyama T, Naito T, Yanagi Y and Itoh Y 2009 Supercond. Sci. Technol. 22 095006
- [15] Oka T, Yokoyama K, Fujishiro H, Kaneyama M and Noto K 2005 Physica C 426–431 794