

Available online at www.sciencedirect.com

Physica B 378-380 (2006) 518-519

www.elsevier.com/locate/physb

Anomalous sound velocity behavior of $La_{1-X}Ca_XMnO_3$ (X~0.48) in applied field

Hiroyuki Fujishiro^{a,*}, Manabu Ikebe^a, Tsutomu Kikuchi^a, Tetsuo Fukase^b

^aFaculty of Engineering, Iwate University, Morioka 020-8551, Japan ^bInstitute of Materials Research, Tohoku University, Sendai 980-8577, Japan

Abstract

The sound velocity $v_s(T)$ has been investigated for $\text{La}_{1-X}\text{Ca}_X\text{MnO}_3$ ($0.46 \le X \le 0.50$) in applied fields up to $\mu_0 H = 5 \text{ T}$. The characteristic $v_s(T)$ softening and the subsequent hardening are observed below the ferromagnetic transition temperature T_c . The gradual $v_s(T)$ softening above the charge-order (CO) transition temperature T_{CO} and the $v_s(T)$ hardening just below T_{CO} are also observable. The $v_s(T)$ softening above T_{CO} is at first enhanced and then reduced with increasing applied field. These results can be understood on the basis of the enhanced spin–lattice and charge–lattice interaction.

© 2006 Elsevier B.V. All rights reserved.

PACS: 62.65.+k; 75.30.Kz; 75.47.Lx

Keywords: La_{1-x}Ca_xMnO₃; Sound velocity; Spin-lattice interaction; Electron-lattice interaction

1. Introduction

Carrier-doped perovskite manganites exhibit a variety of dramatic phenomena caused by the competition or cooperation of the charge order (CO), orbital order (OO), Jahn-Teller (JT) effect, double exchange (DE) and superexchange (SE) interaction, etc. Important information on the electron-lattice interaction related to the orbital and charge degrees of freedom can be obtained from the sound velocity $v_s(T)$ measurement. For La_{1-X}Sr_XMnO₃ (LSMO) and $La_{1-X}Ca_{X}MnO_{3}$ (LCMO) systems, we reported the $v_s(T)$ anomalies associated with CO under the zero magnetic field [1-3]. In LCMO, there is a phase boundary around X = 0.50 between the ferromagnetic (FM) metal and the CO-antiferromagnetic (CO-AFM) insulator, and the volume fraction of each phase in actual specimens changes depending on the Ca concentration X, the applied field $\mu_0 H$ and the temperature T. In this paper, we report the anomalous $v_s(T)$ for LCMO system (X~0.48) in applied fields and discuss the lattice dynamics coupled with spins and charge carriers.

2. Experimental

La_{1-X}Ca_XMnO₃ (0.46 $\leq X \leq 0.50$) samples were fabricated by a conventional solid-state reaction method [2]. $v_s(T)$ was measured by a pulse-superposition method using ~7 MHz longitudinal waves in applied fields up to $\mu_0 H =$ 5 T in the processes of field cooling (FC) and field warming (FW) from 4.2 to 300 K. The magnetization M(T) was measured by a SQUID magnetometer.

3. Results and discussion

Fig. 1 shows $v_s(T)$ in zero field and M(T) in 0.5 T for the X = 0.46 and 0.47 samples. For X = 0.46, the FM transition occurs at $T_c = 235$ K and the $v_s(T)$ upturn was observed below T_c with a faint initial softening. The $v_s(T)$ upturn indicates the strong coupling of the lattice to the spins. The X = 0.47 sample shows two-step phase transitions; T_c decreases to 230 K and the CO-AFM phase appears at lower temperatures. The $v_s(T)$ softening just below T_c increases, compared with that for X = 0.46, which may suggest the enhancement of the spin fluctuation. The $v_s(T)$ hardening with a large hysteresis takes place at

^{*}Corresponding author. Tel.: +81196216363; fax: +81196216363. *E-mail address:* fujishiro@iwate-u.ac.jp (H. Fujishiro).

^{0921-4526/\$ -} see front matter \odot 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2006.01.235

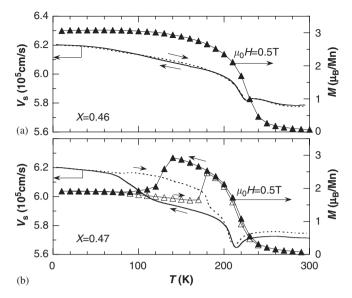


Fig. 1. $v_s(T)$ in zero field and M(T) in 0.5 T for (a) the X = 0.46 and (b) X = 0.47 samples.

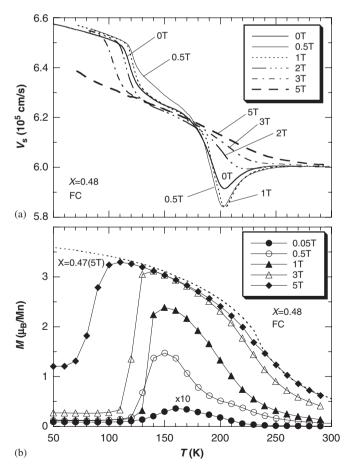


Fig. 2. (a) $v_s(T)$ and (b) M(T) for the X = 0.48 sample in the field-cooling (FC) runs.

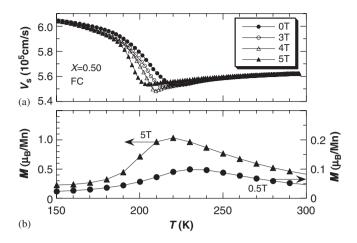


Fig. 3. (a) $v_s(T)$ of the X = 0.50 sample in the (FC) runs and (b) the M(T) in $\mu_0 H = 0.5$ and 5 T.

 $T_{\rm CO} = 120$ K in FC and at 180 K in FW run, where the FM to CO-AFM phase transition occurs. The approach of X to $\frac{1}{2}$ with resultant Mn³⁺:Mn⁴⁺~1:1, makes the CO-AFM state stable. The second hardening in $v_{\rm s}(T)$ at the low temperatures is caused by the appearance of the CO-AFM state.

Fig. 2 shows (a) $v_s(T)$ and (b) M(T) for the X = 0.48 sample in the FC runs. The v_s softening just below $T_c = 225 \text{ K}$ for $\mu_0 H = 0 \text{ T}$ promptly becomes deep with increasing applied field up to 1 T, suggesting the enhancement of the spin fluctuation. This softening is reduced suddenly for $\mu_0 H \ge 2 \text{ T}$ and is wiped out for $\mu_0 H = 5 \text{ T}$ due to the nearly complete alignment of the FM moment. The $v_s(T)$ upturn around 100 K due to the CO-AFM transition shifts to a lower temperature with increasing applied field.

Fig. 3(a) shows $v_s(T)$ for the X = 0.50 sample in the FC runs. Fig. 3(b) shows M(T) for $\mu_0 H = 0.5$ and 5 T, showing the decrease of T_{CO} (defined by the M(T) maximum) with increasing magnetic field. The gradual $v_s(T)$ softening above T_{CO} coming from the charge fluctuation between Mn³⁺ and Mn⁴⁺ ions is enhanced up to 4 T and suddenly reduced in the field of 5 T. These results suggest that the CO-AFM phase at X = 0.50 is stable even under the strong magnetic field.

In summary, the FM and CO-AFM transitions of $La_{1-X}Ca_XMnO_3$ samples ($X\sim0.48$) were monitored by the sound velocity $v_s(T)$ in magnetic fields. With increasing applied field, the spin and/or charge fluctuations around each phase boundary are at first enhanced and then reduced when the FM or CO-AFM state is stabilized.

References

- H. Fujishiro, M. Ikebe, Y. Konno, T. Fukase, J. Phys. Soc. Japan 66 (1997) 3703.
- [2] H. Fujishiro, T. Fukase, M. Ikebe, T. Kikuchi, J. Phys. Soc. Japan 68 (1999) 1469.
- [3] H. Fujishiro, T. Fukase, M. Ikebe, J. Phys. Soc. Japan 70 (2001) 628.